A new technique for color reduction of complex document images is presented in this article. It reduces significantly the number of colors of the document image (less than 15 colors in most of the cases) so as to have solid characters and uniform local backgrounds. Therefore, this technique can be used as a preprocessing step by text information extraction applications. Specifically, using the edge map of the document image, a representative set of samples is chosen that constructs a 3D color histogram. Based on these samples in the 3D color space, a relatively large number of colors (usually no more than 100 colors) are obtained by using a simple clustering procedure. The final colors are obtained by applying a meanshift based procedure. Also, an edge preserving smoothing filter is used as a preprocessing stage that enhances significantly the quality of the initial image. Experimental results prove the method's capability of producing correctly segmented complex color documents where the character elements can be easily extracted as connected components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.