___________________________________________________________________Focus on movement data has increased as a consequence of the larger availability of such data due to current GPS, GSM, RFID, and sensors techniques. In parallel, interest in movement has shifted from raw movement data analysis to more application-oriented ways of analyzing segments of movement suitable for the specific purposes of the application. This trend has promoted semantically rich trajectories, rather than raw movement, as the core object of interest in mobility studies. This survey provides the definitions of the basic concepts about mobility data, an analysis of the issues in mobility data management, and a survey of the approaches and techniques for i) constructing trajectories from movement tracks, ii) enriching trajectories with semantic information to enable the desired interpretations of movements, and iii) using data mining to analyze semantic trajectories and extract knowledge about their characteristics, in particular the behavioral patterns of the moving objects. Last but not least, the paper surveys the new privacy issues that rise due to the semantic aspects of trajectories.
In this paper we present two deep-learning systems that competed at SemEval-2017 Task 4 "Sentiment Analysis in Twitter". We participated in all subtasks for English tweets, involving message-level and topic-based sentiment polarity classification and quantification. We use Long Short-Term Memory (LSTM) networks augmented with two kinds of attention mechanisms, on top of word embeddings pre-trained on a big collection of Twitter messages. Also, we present a text processing tool suitable for social network messages, which performs tokenization, word normalization, segmentation and spell correction. Moreover, our approach uses no hand-crafted features or sentiment lexicons. We ranked 1 st (tie) in Subtask A, and achieved very competitive results in the rest of the Subtasks. Both the word embeddings and our text processing tool 1 are available to the research community.
Recent efforts in spatial and temporal data models and database systems have attempted to achieve an appropriate kind of interaction between the two areas. This paper reviews the different types of spatio-temporal data models that have been proposed in the literature as well as new theories and concepts that have emerged. It provides an overview of previous achievements within the domain and critically evaluates the various approaches through the use of a case study and the construction of a comparison framework. This comparative review is followed by a comprehensive description of the new lines of research that emanate from the latest efforts inside the spatio-temporal research community.
The flow of data generated from low-cost modern sensing technologies and wireless telecommunication devices enables novel research fields related to the management of this new kind of data and the implementation of appropriate analytics for knowledge extraction. In this work, we investigate how the traditional data cube model is adapted to trajectory warehouses in order to transform raw location data into valuable information. In particular, we focus our research on three issues that are critical to trajectory data warehousing: (a) the trajectory reconstruction procedure that takes place when loading a moving object database with sampled location data originated e.g. from GPS recordings, (b) the ETL procedure that feeds a trajectory data warehouse, and (c) the aggregation of cube measures for OLAP purposes. We provide design solutions for all these issues and we test their applicability and efficiency in real world settings.
We present a system for online monitoring of maritime activity over streaming positions from numerous vessels sailing at sea. It employs an online tracking module for detecting important changes in the evolving trajectory of each vessel across time, and thus can incrementally retain concise, yet reliable summaries of its recent movement. In addition, thanks to its complex event recognition module, this system can also offer instant notification to marine authorities regarding emergency situations, such as risk of collisions, suspicious moves in protected zones, or package picking at open sea. Not only did our extensive tests validate the performance, efficiency, and robustness of the system against scalable volumes of real-world and synthetically enlarged datasets, but its deployment against online feeds from vessels has also confirmed its capabilities for effective, real-time maritime surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.