Artificial Intelligence (AI) algorithms for automatic lung nodule detection and classification can assist radiologists in their daily routine of chest CT evaluation. Even though many AI algorithms for these tasks have already been developed, their implementation in the clinical workflow is still largely lacking. Apart from the significant number of false-positive findings, one of the reasons for that is the bias that these algorithms may contain. In this review, different types of biases that may exist in chest CT AI nodule detection and classification algorithms are listed and discussed. Examples from the literature in which each type of bias occurs are presented, along with ways to mitigate these biases. Different types of biases can occur in chest CT AI algorithms for lung nodule detection and classification. Mitigation of them can be very difficult, if not impossible to achieve completely.
One of the primary treatment options for head and neck cancer is (chemo)radiation. Accurate delineation of the contour of the tumors is of great importance in the successful treatment of the tumor and in the prediction of patient outcomes. With this paper we take part in the HECKTOR 2021 challenge and we propose our methods for automatic tumor segmentation on PET and CT images of oropharyngeal cancer patients. To achieve this goal, we investigated different deep learning methods with the purpose of highlighting relevant image and modality related features, to refine the contour of the primary tumor. More specifically, we tested a Co-learning method [1] and a 3D Skip Spatial and Channel Squeeze and Excitation Multi-Scale Attention method (Skip-scSE-M), on the challenge dataset. The best results achieved on the test set were 0.762 mean Dice Similarity Score and 3.143 median of the Hausdorf Distance at 95%.
Long-term survival of oropharyngeal squamous cell carcinoma patients (OPSCC) is quite poor. Accurate prediction of Progression Free Survival (PFS) before treatment could make identification of high-risk patients before treatment feasible which makes it possible to intensify or de-intensify treatments for high-or low-risk patients. In this work, we proposed a deep learning based pipeline for PFS prediction. The proposed pipeline consists of three parts. Firstly, we utilize the pyramid autoencoder for image feature extraction from both CT and PET scans. Secondly, the feed forward feature selection method is used to remove the redundant features from the extracted image features as well as clinical features. Finally, we feed all selected features to a DeepSurv model for survival analysis that outputs the risk score on PFS on individual patients. The whole pipeline was trained on 224 OPSCC patients. We have achieved a average C-index of 0.7806 and 0.7967 on the independent validation set for task 2 and task 3. The C-indices achieved on the test set are 0.6445 and 0.6373, respectively. It is demonstrated that our proposed approach has the potential for PFS prediction and possibly for other survival endpoints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.