The microstructure, isothermal oxidation, and hardness of the Nb-23Ti-5Si-5Al-5Hf-5V-2Cr-2Sn alloy and the hardness and Young’s moduli of elasticity of its Nbss and Nb5Si3 were studied. The alloy was selected using the niobium intermetallic composite elaboration (NICE) alloy design methodology. There was macrosegregation of Ti and Si in the cast alloy. The Nbss, αNb5Si3, γNb5Si3, and HfO2 phases were present in the as-cast or heat-treated alloy plus TiN in the near-the-surface areas of the latter. The vol.% of Nbss was about 80%. There were Ti- and Ti-and-Hf-rich areas in the solid solution and the 5-3 silicide, respectively, and there was a lamellar microstructure of these two phases. The V partitioned to the Nbss, where the solubilities of Al, Cr, Hf, and V increased with increasing Ti concentration. At 700, 800, and 900 °C, the alloy did not suffer from catastrophic pest oxidation; it followed parabolic oxidation kinetics in the former two temperatures and linear oxidation kinetics in the latter, where its mass change was the lowest compared with other Sn-containing alloys. An Sn-rich layer formed in the interface between the scale and the substrate, which consisted of the Nb3Sn and Nb6Sn5 compounds at 900 °C. The latter compound was not contaminated with oxygen. Both the Nbss and Nb5Si3 were contaminated with oxygen, with the former contaminated more severely than the latter. The bulk of the alloy was also contaminated with oxygen. The alloying of the Nbss with Sn increased its elastic modulus compared with Sn-free solid solutions. The hardness of the alloy, its Nbss, and its specific room temperature strength compared favourably with many refractory metal-complex-concentrated alloys (RCCAs). The agreement of the predictions of NICE with the experimental results was satisfactory.
In this work, the RM(Nb)IC alloy Nb–30Ti–10Si–5Cr–5Sn–3Fe–2Al–2Hf (NV2) was studied in the as-cast and heat-treated conditions; its isothermal oxidation at 700, 800 and 900 °C and its room temperature hardness and specific strength were compared with other Sn-containing RM(Nb)ICs—in particular, the alloy Nb–24Ti–18Si–5Cr–5Fe–5Sn (NV5)—and with RCCAs and RHEAs. The addition of Fe (a) stabilised Nbss; A15–Nb3X (X = Al, Si and Sn) and Nb3Si; metastable Nb3Si-m’ and Nb5Si3 silicides; (b) supported the formation of eutectic Nbss + Nb5Si3; (c) suppressed pest oxidation at all three temperatures and (d) stabilised a Cr- and Fe-rich phase instead of a C14–Nb(Cr,Fe)2 Laves phase. Complex concentrated (or compositionally complex) and/or high entropy phases co-existed with “conventional” phases in all conditions and after oxidation at 800 °C. In NV2, the macrosegregation of Si decreased but liquation occurred at T >1200 °C. A solid solution free of Si and rich in Cr and Ti was stable after the heat treatments. The relationships between solutes in the various phases, between solutes and alloy parameters and between alloy hardness or specific strength and the alloy parameters were established (parameters δ, Δχ and VEC). The oxidation of NV2 at 700 °C was better than the other Sn-containing RM(Nb)ICs with/without Fe addition, even better than RM(Nb)IC alloys with lower vol.% Nbss. At 800 °C, the mass change of NV2 was slightly higher than that of NV5, and at 900 °C, both alloys showed scale spallation. At 800 °C, both alloys formed a more or less continuous layer of A15–Nb3X below the oxide scale, but in NV5, this compound was Sn-rich and severely oxidised. At 800 °C, in the diffusion zone (DZ) and the bulk of NV2, Nbss was more severely contaminated with oxygen than Nb5Si3, and the contamination of A15–Nb3X was in-between these phases. The contamination of all three phases was more severe in the DZ. The contamination of all three phases in the bulk of NV5 was more severe compared with NV2. The specific strength of NV2 was comparable with that of RCCAs and RHEAs, and its oxidation at all three temperatures was significantly better than RHEAs and RCCAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.