Silver nanoparticles (AgNP) are likely to enter the aquatic environment because of their multiple uses. We have examined the short-term toxicity of AgNP and ionic silver (Ag+) to photosynthesis in Chlamydomonas reinhardtii using fluorometry. AgNP ranged in size from 10 to 200 nm with most particles around 25 nm. As determined by DGT (diffusive gradients in thin films), by ion-selective electrode, and by centrifugal ulrafiltration, about 1% of the AgNP was present as Ag+ ions. Based on total Ag concentration, toxicity was 18 times higher for AgNO3 than for AgNP (in terms of EC50). However, when compared as a function of the Ag+ concentration,toxicity of AgNP appeared to be much higher than that of AgNO3. The ionic Ag+ measured in the AgNP suspensions could not fully explain the observed toxicity. Cysteine, a strong Ag+ ligand, abolished the inhibitory effects on photosynthesis of both AgNP and Ag+. Together, the results indicate that the interaction of these particles with algae influences the toxicity of AgNP, which is mediated by Ag+. Particles contributed to the toxicity as a source of Ag+ which is formed in presence of algae.
Measurements of trace metal species in situ in a softwater river, a hardwater lake, and a hardwater stream were compared to the equilibrium distribution of species calculated using two models, WHAM 6, incorporating humic ion binding model VI and visual MINTEQ incorporating NICA−Donnan. Diffusive gradients in thin films (DGT) and voltammetry at a gel integrated microelectrode (GIME) were used to estimate dynamic species that are both labile and mobile. The Donnan membrane technique (DMT) and hollow fiber permeation liquid membrane (HFPLM) were used to measure free ion activities. Predictions of dominant metal species using the two models agreed reasonably well, even when colloidal oxide components were considered. Concentrations derived using GIME were generally lower than those from DGT, consistent with calculations of the lability criteria that take into account the smaller time window available for the flux to GIME. Model predictions of free ion activities generally did not agree with measurements, highlighting the need for further work and difficulties in obtaining appropriate input data.
Several techniques for speciation analysis of Cu, Zn, Cd, Pb, and Ni are used in freshwater systems and compared with respect to their performance and to the metal species detected. The analytical techniques comprise the following: (i) diffusion gradients in thin-film gels (DGT); (ii) gel integrated microelectrodes combined to voltammetric in situ profiling system (GIME−VIP); (iii) stripping chronopotentiometry (SCP); (iv) flow-through and hollow fiber permeation liquid membranes (FTPLM and HFPLM); (v) Donnan membrane technique (DMT); (vi) competitive ligand-exchange/stripping voltammetry (CLE−SV). All methods could be used both under hardwater and under softwater conditions, although in some cases problems with detection limits were encountered at the low total concentrations. The detected Cu, Cd, and Pb concentrations decreased in the order DGT ≥ GIME−VIP ≥ FTPLM ≥ HFPLM ≈ DMT (>CLE−SV for Cd), detected Zn decreased as DGT ≥ GIME−VIP and Ni as DGT > DMT, in agreement with the known dynamic features of these techniques. Techniques involving in situ measurements (GIME−VIP) or in situ exposure (DGT, DMT, and HFPLM) appear to be appropriate in avoiding artifacts which may occur during sampling and sample handling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.