Face is a complex multidimensional visual model and developing a computational model for face recognition is difficult. The paper presents a methodology for face recognition based on information theory approach of coding and decoding the face image. Proposed methodology is connection of two stages-Feature extraction using principle component analysis and recognition using the feed forward back propagation Neural Network. The algorithm has been tested on 400 images (40 classes). A recognition score for test lot is calculated by considering almost all the variants of feature extraction. The proposed methods were tested on Olivetti and Oracle Research Laboratory (ORL) face database. Test results gave a recognition rate of 97.018%
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.