SummaryThis review presents a comprehensive overview on selected synthetic routes towards commercial drug compounds as published in both journal and patent literature. Owing to the vast number of potential structures, we have concentrated only on those drugs containing five-membered heterocycles and focused principally on the assembly of the heterocyclic core. In order to target the most representative chemical entities the examples discussed have been selected from the top 200 best selling drugs of recent years.
The preparation and use of an azide-containing monolithic reactor is described for use in a flow chemistry device and in particular for conducting Curtius rearrangement reactions via acid chloride inputs.
Here we describe general flow processes for the synthesis of alkyl and aryl azides, and the development of a new monolithic triphenylphosphine reagent, which provides a convenient format for the use of this versatile reagent in flow. The utility of these new tools was demonstrated by their application to a flow Staudinger aza-Wittig reaction sequence. Finally, a multistep aza-Wittig, reduction and purification flow process was designed, allowing access to amine products in an automated fashion.
An automated reactor has been developed for performing ligand-free Heck reactions in continuous flow mode. The reactor utilises a monolithic reactor cartridge derivatised with Pd(0) nanoparticles in-line with a scavenging cartridge containing Quadrapure-TU to efficiently capture palladium residues and thereby afford Heck products directly in high purity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.