In lensless microscopy, spatial resolution is usually provided by the pixel density of current digital cameras, which are reaching a hard-to-surpass pixel size / resolution limit over 1 µm. As an alternative, the dependence of the resolving power can be moved from the detector to the light sources, offering a new kind of lensless microscopy setups. The use of continuously scaled-down Light-Emitting Diode (LED) arrays to scan the sample allows resolutions on order of the LED size, giving rise to compact and low-cost microscopes without mechanical scanners or optical accessories. In this paper, we present the operation principle of this new approach to lensless microscopy, with simulations that demonstrate the possibility to use it for super-resolution, as well as a first prototype. This proof-of-concept setup integrates an 8 × 8 array of LEDs, each 5 × 5 μm2 pixel size and 10 μm pitch, and an optical detector. We characterize the system using Electron-Beam Lithography (EBL) pattern. Our prototype validates the imaging principle and opens the way to improve resolution by further miniaturizing the light sources.
This work presents a low cost fluorescence life time measurement system, aimed at carrying out fast diagnostic tests through label detection in a portable system so it can be used in a medical consultation, within a short time span. The system uses Time Correlated Single Photon Counting (TCSPC), measuring the arrival time of individual photons and building a histogram of those times, showing the fluorescence decay of the label which is characteristic of each fluorescent substance. The system is implemented using a Xilinx FPGA which controls the experiment and includes a Time to Digital Converter (TDC) to perform measurements with a resolution in the order of tenths of picoseconds. Also included are a laser diode and the driving electronics to generate short pulses as well as a HV-CMOS implemented Single Photon Avalanche Diode (SPAD) as a high gain sensor. The system is entirely configurable so it can easily be adapted to the target label molecule and measurement needs. The histogram is constructed within the FPGA and can then be read as convenient. Various performance parameters are also shown, as well as experimental measurements of a quantum dot fluorescence decay as a proof of concept.
We describe the integration of techniques and technologies to develop a Point-of-Care for molecular diagnosis PoC-MD, based on a fluorescence lifetime measurement. Our PoC-MD is a low-cost, simple, fast, and easy-to-use general-purpose platform, aimed at carrying out fast diagnostics test through label detection of a variety of biomarkers. It is based on a 1-D array of 10 ultra-sensitive Single-Photon Avalanche Diode (SPAD) detectors made in a 0.18 μm High-Voltage Complementary Metal Oxide Semiconductor (HV-CMOS) technology. A custom microfluidic polydimethylsiloxane cartridge to insert the sample is straightforwardly positioned on top of the SPAD array without any alignment procedure with the SPAD array. Moreover, the proximity between the sample and the gate-operated SPAD sensor makes unnecessary any lens or optical filters to detect the fluorescence for long lifetime fluorescent dyes, such as quantum dots. Additionally, the use of a low-cost laser diode as pulsed excitation source and a Field-Programmable Gate Array (FPGA) to implement the control and processing electronics, makes the device flexible and easy to adapt to the target label molecule by only changing the laser diode. Using this device, reliable and sensitive real-time proof-of-concept fluorescence lifetime measurement of quantum dot QdotTM 605 streptavidin conjugate is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.