Abstract. We study monomial curves, toric ideals and monomial algebras associated to 4-generated pseudo symmetric numerical semigroups. Namely, we determine indispensable binomials of these toric ideals, give a characterization for these monomial algebras to have strongly indispensable minimal graded free resolutions. We also characterize when the tangent cones of these monomial curves at the origin are Cohen-Macaulay.
In this article, we give a fast and an easily implementable algorithm for computing the Arf closure of an irreducible algebroid curve (or a branch). Moreover, we study the relation between the branches having the same Arf closure and their regularity indices. We give some results and a conjecture, which are steps towards the interpretation of Arf closure as a specific way of taming the singularity.
We compute Betti numbers for a Cohen–Macaulay tangent cone of a monomial curve in the affine $4$-space corresponding to a pseudo-symmetric numerical semigroup. As a byproduct, we also show that for these semigroups, being of homogeneous type and homogeneous are equivalent properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.