Metallic antiferromagnets with broken inversion symmetry on the two sublattices, strong spin-orbit coupling, and high Néel temperatures offer alternative opportunities for applications in spintronics. Especially Mn 2 Au, with a high Néel temperature and high conductivity, is particularly interesting for real-world applications. Here, manipulation of the orientation of the staggered magnetization, (i.e., the Néel vector) by current pulses was recently demonstrated, with the readout limited to studies of anisotropic magnetoresistance or x-ray magnetic linear dichroism. Here we report on the in-plane reflectivity anisotropy of Mn 2 Au(001) films, which are Néel vector aligned in pulsed magnetic fields. In the near-infrared region, the anisotropy is approximately 0.6%, with higher reflectivity for the light polarized along the Néel vector. The observed magnetic linear dichroism is about 4 times larger than the anisotropic magnetoresistance. This suggests the dichroism in Mn 2 Au is a result of the strong spin-orbit interactions giving rise to anisotropy of interband optical transitions, which is in line with recent studies of electronic band structure. The considerable magnetic linear dichroism in the near-infrared region could be used for ultrafast optical readout of the Néel vector in Mn 2 Au.
We observe the excitation of collective modes in the terahertz (THz) range driven by the recently discovered Néel spin-orbit torques (NSOTs) in the metallic antiferromagnet Mn_{2}Au. Temperature-dependent THz spectroscopy reveals a strong absorption mode centered near 1 THz, which upon heating from 4 to 450 K softens and loses intensity. A comparison with the estimated eigenmode frequencies implies that the observed mode is an in-plane antiferromagnetic resonance (AFMR). The AFMR absorption strength exceeds those found in antiferromagnetic insulators, driven by the magnetic field of the THz radiation, by 3 orders of magnitude. Based on this and the agreement with our theory modeling, we infer that the driving mechanism for the observed mode is the current-induced NSOT. Here the electric field component of the THz pulse drives an ac current in the metal, which subsequently drives the AFMR. This electric manipulation of the Néel order parameter at high frequencies makes Mn_{2}Au a prime candidate for antiferromagnetic ultrafast memory applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.