In experimental cultures, when bacteria are mixed with lytic (virulent) bacteriophage, bacterial cells resistant to the phage commonly emerge and become the dominant population of bacteria. Following the ascent of resistant mutants, the densities of bacteria in these simple communities become limited by resources rather than the phage. Despite the evolution of resistant hosts, upon which the phage cannot replicate, the lytic phage population is most commonly maintained in an apparently stable state with the resistant bacteria. Several mechanisms have been put forward to account for this result. Here we report the results of population dynamic/evolution experiments with a virulent mutant of phage Lambda, λVIR, and Escherichia coli in serial transfer cultures. We show that, following the ascent of λVIR-resistant bacteria, λVIR is maintained in the majority of cases in maltose-limited minimal media and in all cases in nutrient-rich broth. Using mathematical models and experiments, we show that the dominant mechanism responsible for maintenance of λVIR in these resource-limited populations dominated by resistant E. coli is a high rate of either phenotypic or genetic transition from resistance to susceptibility—a hitherto undemonstrated mechanism we term "leaky resistance." We discuss the implications of leaky resistance to our understanding of the conditions for the maintenance of phage in populations of bacteria—their “existence conditions.”
Nonreplicating bacteria are known to be (or at least commonly thought to be) refractory to antibiotics to which they are genetically susceptible. Here, we explore the sensitivity to killing by bactericidal antibiotics of three classes of nonreplicating populations of planktonic bacteria: (i) stationary phase, when the concentration of resources and/or nutrients are too low to allow for population growth; (ii) persisters, minority subpopulations of susceptible bacteria surviving exposure to bactericidal antibiotics; and (iii) antibiotic-static cells, bacteria exposed to antibiotics that prevent their replication but kill them slowly if at all, the so-called bacteriostatic drugs. Using experimental populations of Staphylococcus aureus Newman and Escherichia coli K-12 (MG1655) and, respectively, nine and seven different bactericidal antibiotics, we estimated the rates at which these drugs kill these different types of nonreplicating bacteria. In contrast to the common belief that bacteria that are nonreplicating are refractory to antibiotic-mediated killing, all three types of nonreplicating populations of these Gram-positive and Gram-negative bacteria are consistently killed by aminoglycosides and the peptide antibiotics daptomycin and colistin, respectively. This result indicates that nonreplicating cells, irrespectively of why they do not replicate, have an almost identical response to bactericidal antibiotics. We discuss the implications of these results to our understanding of the mechanisms of action of antibiotics and the possibility of adding a short-course of aminoglycosides or peptide antibiotics to conventional therapy of bacterial infections.
Glioblastoma (GBM) and lower grade gliomas (LGG) are the most common primary malignant brain tumors and are resistant to current therapies. Genomic analyses reveal that signature genetic lesions in GBM and LGG include copy gain and amplification of chromosome 7, amplification, mutation, and overexpression of receptor tyrosine kinases (RTK) such as EGFR, and activating mutations in components of the PI3K pathway. In Drosophila melanogaster, constitutive co-activation of RTK and PI3K signaling in glial progenitor cells recapitulates key features of human gliomas. Here we use this Drosophila glioma model to identify death-associated protein kinase (Drak), a cytoplasmic serine/threonine kinase orthologous to the human kinase STK17A, as a downstream effector of EGFR and PI3K signaling pathways. Drak was necessary for glial neoplasia, but not for normal glial proliferation and development, and Drak cooperated with EGFR to promote glial cell transformation. Drak phosphorylated Sqh, the Drosophila ortholog of nonmuscle myosin regulatory light chain (MRLC), which was necessary for transformation. Moreover, Anillin, which is a binding partner of phosphorylated Sqh, was upregulated in a Drak-dependent manner in mitotic cells and colocalized with phosphorylated Sqh in neoplastic cells undergoing mitosis and cytokinesis, consistent with their known roles in nonmuscle myosin-dependent cytokinesis. These functional relationships were conserved in human GBM. Our results indicate that Drak/STK17A, its substrate Sqh/MRLC, and the effector Anillin/ANLN regulate mitosis and cytokinesis in gliomas. This pathway may provide a new therapeutic target for gliomas. Significance: These findings reveal new insights into differential regulation of cell proliferation in malignant brain tumors, which will have a broader impact on research regarding mechanisms of oncogene cooperation and dependencies in cancer. See related commentary by Lathia, p. 1036
Non-replicating bacteria are known to be (or at least commonly thought to be) refractory to antibiotics to which they are genetically susceptible. Here, we explore the sensitivity to killing by bactericidal antibiotics of three classes of non-replicating populations of planktonic bacteria; (1) stationary phase, when the concentration of resources and/or nutrients are too low to allow for population growth; (2) persisters, minority subpopulations of susceptible bacteria surviving exposure to bactericidal antibiotics; (3) antibiotic-static cells, bacteria exposed to antibiotics that prevent their replication but kill them slowly if at all, the so-called bacteriostatic drugs. Using experimental populations of Staphylococcus aureus Newman and Escherichia coli K12 (MG1655) and respectively 9 and 7 different bactericidal antibiotics, we estimate the rates at which these drugs kill these different types of non-replicating bacteria. Contrary to the common belief that bacteria that are non-replicating are refractory to antibiotic-mediated killing, all three types of non-replicating populations of these Gram-positive and Gram-negative bacteria are consistently killed by aminoglycosides and the peptide antibiotics, daptomycin and colistin, respectively. This result indicates that non-replicating cells, irrespectively of why they do not replicate, have an almost identical response to bactericidal antibiotics. We discuss the implications of these results to our understanding of the mechanisms of action of antibiotics and the possibility of adding a short-course of aminoglycosides or peptide antibiotics to conventional therapy of bacterial infections.
<div>Abstract<p>Glioblastoma (GBM) and lower grade gliomas (LGG) are the most common primary malignant brain tumors and are resistant to current therapies. Genomic analyses reveal that signature genetic lesions in GBM and LGG include copy gain and amplification of chromosome 7, amplification, mutation, and overexpression of receptor tyrosine kinases (RTK) such as EGFR, and activating mutations in components of the PI3K pathway. In <i>Drosophila melanogaster</i>, constitutive co-activation of RTK and PI3K signaling in glial progenitor cells recapitulates key features of human gliomas. Here we use this <i>Drosophila</i> glioma model to identify death-associated protein kinase (Drak), a cytoplasmic serine/threonine kinase orthologous to the human kinase STK17A, as a downstream effector of EGFR and PI3K signaling pathways. Drak was necessary for glial neoplasia, but not for normal glial proliferation and development, and Drak cooperated with EGFR to promote glial cell transformation. Drak phosphorylated Sqh, the <i>Drosophila</i> ortholog of nonmuscle myosin regulatory light chain (MRLC), which was necessary for transformation. Moreover, Anillin, which is a binding partner of phosphorylated Sqh, was upregulated in a Drak-dependent manner in mitotic cells and colocalized with phosphorylated Sqh in neoplastic cells undergoing mitosis and cytokinesis, consistent with their known roles in nonmuscle myosin-dependent cytokinesis. These functional relationships were conserved in human GBM. Our results indicate that Drak/STK17A, its substrate Sqh/MRLC, and the effector Anillin/ANLN regulate mitosis and cytokinesis in gliomas. This pathway may provide a new therapeutic target for gliomas.</p><p><b>Significance:</b> These findings reveal new insights into differential regulation of cell proliferation in malignant brain tumors, which will have a broader impact on research regarding mechanisms of oncogene cooperation and dependencies in cancer.</p><p><i>See related commentary by Lathia, p. 1036</i></p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.