Lung abnormality is one of the common diseases in humans of all age group and this disease may arise due to various reasons. Recently, the lung infection due to SARS-CoV-2 has affected a larger human community globally, and due to its rapidity, the World-Health-Organisation (WHO) declared it as pandemic disease. The COVID-19 disease has adverse effects on the respiratory system, and the infection severity can be detected using a chosen imaging modality. In the proposed research work; the COVID-19 is detected using transfer learning from CT scan images decomposed to three-level using stationary wavelet. A three-phase detection model is proposed to improve the detection accuracy and the procedures are as follows; Phase1-data augmentation using stationary wavelets, Phase2-COVID-19 detection using pre-trained CNN model and Phase3-abnormality localization in CT scan images. This work has considered the well known pre-trained architectures, such as ResNet18, ResNet50, ResNet101, and SqueezeNet for the experimental evaluation. In this work, 70% of images are considered to train the network and 30% images are considered to validate the network. The performance of the considered architectures is evaluated by computing the common performance measures. The result of the experimental evaluation confirms that the ResNet18 pre-trained transfer learning-based model offered better classification accuracy (training=99.82%, validation=97.32%, and testing=99.4%) on the considered image dataset compared with the alternatives.
COVID-19 is a pandemic that has affected over 170 countries around the world. The number of infected and deceased patients has been increasing at an alarming rate in almost all the affected nations. Forecasting techniques can be inculcated thereby assisting in designing better strategies and in taking productive decisions. These techniques assess the situations of the past thereby enabling better predictions about the situation to occur in the future. These predictions might help to prepare against possible threats and consequences. Forecasting techniques play a very important role in yielding accurate predictions. This study categorizes forecasting techniques into two types, namely, stochastic theory mathematical models and data science/ machine learning techniques. Data collected from various platforms also play a vital role in forecasting. In this study, two categories of datasets have been discussed, i.e., big data accessed from World Health Organization/National databases and data from a social media communication. Forecasting of a pandemic can be done based on various parameters such as the impact of environmental factors, incubation period, the impact of quarantine, age, gender and many more. These techniques and parameters used for forecasting are extensively studied in this work. However, forecasting techniques come with their own set of challenges (technical and generic). This study discusses these challenges and also provides a set of recommendations for the people who are currently fighting the global COVID-19 pandemic.
Epidemic is a rapid and wide spread of infectious disease threatening many lives and economy damages. It is important to fore-tell the epidemic lifetime so to decide on timely and remedic actions. These measures include closing borders, schools, suspending community services and commuters. Resuming such curfews depends on the momentum of the outbreak and its rate of decay. Being able to accurately forecast the fate of an epidemic is an extremely important but difficult task. Due to limited knowledge of the novel disease, the high uncertainty involved and the complex societal-political factors that influence the widespread of the new virus, any forecast is anything but reliable. Another factor is the insufficient amount of available data. Data samples are often scarce when an epidemic just started. With only few training samples on hand, finding a forecasting model which offers forecast at the best efforts is a big challenge in machine learning. In the past, three popular methods have been proposed, they include 1) augmenting the existing little data, 2) using a panel selection to pick the best forecasting model from several models, and 3) fine-tuning the parameters of an individual forecasting model for the highest possible accuracy. In this paper, a methodology that embraces these three virtues of data mining from a small dataset is proposed. An experiment that is based on the recent coronavirus outbreak originated from Wuhan is conducted by applying this methodology. It is shown that an optimized forecasting model that is constructed from a new algorithm, namely polynomial neural network with corrective feedback (PNN+cf) is able to make a forecast that has relatively the lowest prediction error. The results showcase that the newly proposed methodology and PNN+cf are useful in generating acceptable forecast upon the critical time of disease outbreak when the samples are far from abundant.
In the advent of the novel coronavirus epidemic since December 2019, governments and authorities have been struggling to make critical decisions under high uncertainty at their best efforts. Composite Monte-Carlo (CMC) simulation is a forecasting method which extrapolates available data which are broken down from multiple correlated/casual micro-data sources into many possible future outcomes by drawing random samples from some probability distributions. For instance, the overall trend and propagation of the infested cases in China are influenced by the temporal-spatial data of the nearby cities around the Wuhan city (where the virus is originated from), in terms of the population density, travel mobility, medical resources such as hospital beds and the timeliness of quarantine control in each city etc. Hence a CMC is reliable only up to the closeness of the underlying statistical distribution of a CMC, that is supposed to represent the behaviour of the future events, and the correctness of the composite data relationships. In this paper, a case study of using CMC that is enhanced by deep learning network and fuzzy rule induction for gaining better stochastic insights about the epidemic development is experimented. Instead of applying simplistic and uniform assumptions for a MC which is a common practice, a deep learning-based CMC is used in conjunction of fuzzy rule induction techniques. As a result, decision makers are benefited from a better fitted MC outputs complemented by min-max rules that foretell about the extreme ranges of future possibilities with respect to the epidemic. * Corresponding
The fields of medicine science and health informatics have made great progress recently and have led to in-depth analytics that is demanded by generation, collection and accumulation of massive data. Meanwhile, we are entering a new period where novel technologies are starting to analyze and explore knowledge from tremendous amount of data, bringing limitless potential for information growth. One fact that cannot be ignored is that the techniques of machine learning and deep learning applications play a more significant role in the success of bioinformatics exploration from biological data point of view, and a linkage is emphasized and established to bridge these two data analytics techniques and bioinformatics in both industry and academia. This survey concentrates on the review of recent researches using data mining and deep learning approaches for analyzing the specific domain knowledge of bioinformatics. The authors give a brief but pithy summarization of numerous data mining algorithms used for preprocessing, classification and clustering as well as various optimized neural network architectures in deep learning methods, and their advantages and disadvantages in the practical applications are also discussed and compared in terms of their industrial usage. It is believed that in this review paper, valuable insights are provided for those who are dedicated to start using data analytics methods in bioinformatics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.