Incidence and mortality rates for prostate cancer (PCa) are higher in African-American (AA) men than European American (EA) men, but the biological basis for this disparity is unclear. We carried out a detailed analysis of gene expression changes in PCa compared to their matched benign tissues in a cohort of AA men and compared them to existing data from EA men. In this manner, we identified MNX1 as a novel oncogene upregulated to a relatively greater degree in PCa from AA men. Androgen and AKT signaling play a central role in the pathogenesis of PCa and we found that both of these signaling pathways increased MNX1 expression. MNX1 in turn upregulated lipid synthesis by stimulating expression of SREBP1 and fatty acid synthetase. Our results define MNX1 as a novel targetable oncogene increased in AA PCa that is associated with aggressive disease.
Retinoblastoma (Rb) is a pediatric intraocular malignancy that is proposed to originate from maturing cone cell precursors in the developing retina. The molecular mechanisms underlying the biological and clinical behaviors are important to understand in order to improve the management of advanced-stage tumors. While the genetic causes of Rb are known, an integrated understanding of the gene expression and metabolic processes in tumors of human eyes is deficient. By integrating transcriptomic profiling from tumor tissues and metabolomics from tumorous eye vitreous humor samples (with healthy, age-matched pediatric retinae and vitreous samples as controls), we uncover unique functional associations between genes and metabolites. We found distinct gene expression patterns between clinically advanced and non-advanced Rb. Global metabolomic analysis of the vitreous humor of the same Rb eyes revealed distinctly altered metabolites, indicating how tumor metabolism has diverged from healthy pediatric retina. Several key enzymes that are related to cellular energy production, such as hexokinase 1, were found to be reduced in a manner corresponding to altered metabolites; notably, a reduction in pyruvate levels. Similarly, E2F2 was the most significantly elevated E2F family member in our cohort that is part of the cell cycle regulatory circuit. Ectopic expression of the wild-type RB1 gene in the Rb-null Y79 and WERI-Rb1 cells rescued hexokinase 1 expression, while E2F2 levels were repressed. In an additional set of Rb tumor samples and pediatric healthy controls, we further validated differences in the expression of HK1 and E2F2. Through an integrated omics analysis of the transcriptomics and metabolomics of Rb, we uncovered a significantly altered tumor-specific metabolic circuit that reduces its dependence on glycolytic pathways and is governed by Rb1 and HK1.
In Saccharomyces cerevisiae, many osmotically inducible genes are regulated by the Sko1p-Ssn6p-Tup1p complex. On osmotic shock, the MAP kinase Hog1p associates with this complex, phosphorylates Sko1p, and converts it into an activator that subsequently recruits Swi/Snf and SAGA complexes. We have found that phospholipase C (Plc1p encoded by PLC1) is required for derepression of Sko1p-Ssn6p-Tup1p-controlled osmoinducible genes upon osmotic shock. Although plc1Delta mutation affects the assembly of the preinitiation complex after osmotic shock, it does not affect the recruitment of Hog1p and Swi/Snf complex at these promoters. However, Plc1p facilitates osmotic shock-induced recruitment of the SAGA complex. Like plc1Delta cells, SAGA mutants are osmosensitive and display compromised expression of osmotically inducible genes. The reduced binding of SAGA to Sko1p-Ssn6p-Tup1p-repressed promoters in plc1Delta cells does not correlate with reduced histone acetylation. However, SAGA functions at these promoters to facilitate recruitment of the TATA-binding protein. The results thus provide evidence that Plc1p and inositol polyphosphates affect derepression of Sko1p-Ssn6p-Tup1p-controlled genes by a mechanism that involves recruitment of the SAGA complex and TATA-binding protein.
High-fidelity chromosome segregation during mitosis requires kinetochores, protein complexes that assemble on centromeric DNA and mediate chromosome attachment to spindle microtubules. In budding yeast, phosphoinositide-specific phospholipase C (Plc1p encoded by PLC1 gene) is important for function of kinetochores. Deletion of PLC1 results in alterations in chromatin structure of centromeres, reduced binding of microtubules to minichromosomes, and a higher frequency of chromosome loss. The mechanism of Plc1p's involvement in kinetochore activity was not initially obvious; however, a testable hypothesis emerged with the discovery of the role of inositol polyphosphates (InsPs), produced by a Plc1p-dependent pathway, in the regulation of chromatin-remodeling complexes. In addition, the remodels structure of chromatin (RSC) chromatin-remodeling complex was found to associate with kinetochores and to affect centromeric chromatin structure. We report here that Plc1p and InsPs are required for recruitment of the RSC complex to kinetochores, which is important for establishing proper chromatin structure of centromeres and centromere proximal regions. Mutations in PLC1 and components of the RSC complex exhibit strong genetic interactions and display synthetic growth defect, altered nuclear morphology, and higher frequency of minichromosome loss. The results thus provide a mechanistic explanation for the previously elusive role of Plc1p and InsPs in kinetochore function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.