The purpose of the present study was to determine whether oxidation of various proteins during the aging process occurs selectively or randomly, and whether the same proteins are damaged in different species. Protein oxidative damage to the proteins, present in the matrix of mitochondria in the flight muscles of Drosophila melanogaster and manifested as carbonyl modifications, was detected immunochemically with anti-dinitrophenyl-group antibodies. Aconitase was found to be the only protein in the mitochondrial matrix that exhibited an age-associated increase in carbonylation. The accrual of oxidative damage was accompanied by an approx. 50% loss in aconitase activity. An increase in ambient temperature, which elevates the rate of metabolism and shortens the life span of flies, caused an elevation in the amount of aconitase carbonylation and an accelerated loss in its activity. Exposure to 100% ambient oxygen showed that aconitase was highly susceptible to undergo oxidative damage and loss of activity under oxidative stress. Administration of fluoroacetate, a competitive inhibitor of aconitase activity, resulted in a dose-dependent decrease in the life span of the flies. Results of the present study demonstrate that protein oxidative damage during aging is a selective phenomenon, and might constitute a mechanism by which oxidative stress causes age-associated losses in specific biochemical functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.