BackgroundEnvenoming resulting from snakebites is an important public health problem in many tropical and subtropical countries. Few attempts have been made to quantify the burden, and recent estimates all suffer from the lack of an objective and reproducible methodology. In an attempt to provide an accurate, up-to-date estimate of the scale of the global problem, we developed a new method to estimate the disease burden due to snakebites.Methods and FindingsThe global estimates were based on regional estimates that were, in turn, derived from data available for countries within a defined region. Three main strategies were used to obtain primary data: electronic searching for publications on snakebite, extraction of relevant country-specific mortality data from databases maintained by United Nations organizations, and identification of grey literature by discussion with key informants. Countries were grouped into 21 distinct geographic regions that are as epidemiologically homogenous as possible, in line with the Global Burden of Disease 2005 study (Global Burden Project of the World Bank). Incidence rates for envenoming were extracted from publications and used to estimate the number of envenomings for individual countries; if no data were available for a particular country, the lowest incidence rate within a neighbouring country was used. Where death registration data were reliable, reported deaths from snakebite were used; in other countries, deaths were estimated on the basis of observed mortality rates and the at-risk population. We estimate that, globally, at least 421,000 envenomings and 20,000 deaths occur each year due to snakebite. These figures may be as high as 1,841,000 envenomings and 94,000 deaths. Based on the fact that envenoming occurs in about one in every four snakebites, between 1.2 million and 5.5 million snakebites could occur annually.ConclusionsSnakebites cause considerable morbidity and mortality worldwide. The highest burden exists in South Asia, Southeast Asia, and sub-Saharan Africa.
BackgroundFoodborne diseases are globally important, resulting in considerable morbidity and mortality. Parasitic diseases often result in high burdens of disease in low and middle income countries and are frequently transmitted to humans via contaminated food. This study presents the first estimates of the global and regional human disease burden of 10 helminth diseases and toxoplasmosis that may be attributed to contaminated food.Methods and FindingsData were abstracted from 16 systematic reviews or similar studies published between 2010 and 2015; from 5 disease data bases accessed in 2015; and from 79 reports, 73 of which have been published since 2000, 4 published between 1995 and 2000 and 2 published in 1986 and 1981. These included reports from national surveillance systems, journal articles, and national estimates of foodborne diseases. These data were used to estimate the number of infections, sequelae, deaths, and Disability Adjusted Life Years (DALYs), by age and region for 2010. These parasitic diseases, resulted in 48.4 million cases (95% Uncertainty intervals [UI] of 43.4–79.0 million) and 59,724 (95% UI 48,017–83,616) deaths annually resulting in 8.78 million (95% UI 7.62–12.51 million) DALYs. We estimated that 48% (95% UI 38%-56%) of cases of these parasitic diseases were foodborne, resulting in 76% (95% UI 65%-81%) of the DALYs attributable to these diseases. Overall, foodborne parasitic disease, excluding enteric protozoa, caused an estimated 23.2 million (95% UI 18.2–38.1 million) cases and 45,927 (95% UI 34,763–59,933) deaths annually resulting in an estimated 6.64 million (95% UI 5.61–8.41 million) DALYs. Foodborne Ascaris infection (12.3 million cases, 95% UI 8.29–22.0 million) and foodborne toxoplasmosis (10.3 million cases, 95% UI 7.40–14.9 million) were the most common foodborne parasitic diseases. Human cysticercosis with 2.78 million DALYs (95% UI 2.14–3.61 million), foodborne trematodosis with 2.02 million DALYs (95% UI 1.65–2.48 million) and foodborne toxoplasmosis with 825,000 DALYs (95% UI 561,000–1.26 million) resulted in the highest burdens in terms of DALYs, mainly due to years lived with disability. Foodborne enteric protozoa, reported elsewhere, resulted in an additional 67.2 million illnesses or 492,000 DALYs. Major limitations of our study include often substantial data gaps that had to be filled by imputation and suffer from the uncertainties that surround such models. Due to resource limitations it was also not possible to consider all potentially foodborne parasites (for example Trypanosoma cruzi).ConclusionsParasites are frequently transmitted to humans through contaminated food. These estimates represent an important step forward in understanding the impact of foodborne diseases globally and regionally. The disease burden due to most foodborne parasites is highly focal and results in significant morbidity and mortality among vulnerable populations.
Table of Contents Summary1191. Introduction119 1.1 The gastrointestinal ecosystem119 1.2 Groups of intestinal parasitic worms that infect humans121 1.2.1 Flukes or trematodes121 1.2.2 Tapeworms or cestodes122 1.2.3 Roundworms or nematodes123 1.3 How worms may affect human nutrition and growth126 1.4 Design of studies estimating the impact of worms128 1.5 Aims1282. Factors affecting the impact of intestinal worms128 2.1 Species of intestinal worm128 2.2 Prevalence of infection129 2.3 Number and distribution of worms132 2.4 Duration of infection135 2.5 Rate of reinfection135 2.6 Summary1363. Factors affecting the impact of treatment137 3.1 Study design: controls and randomization138 3.2 Anthelmintic drugs138 3.3 Intervals between treatments141 3.4 Duration of follow‐up142 3.5 Outcomes measured and the need for controls142 3.6 Initial nutritional status143 3.7 Age of subjects144 3.8 Remedial therapy after treatment144 3.9 Summary1454. Aims and methods of the meta‐analysis145 4.1 Search terms145 4.2 Inclusion criteria146 4.3 Exclusion criteria147 4.4 Meta‐analysis1475. Results of the meta‐analysis147 5.1 Geographic origin of studies150 5.2 Estimates of effects150 5.3 The figures and how to interpret them150 5.4 Sources of error or bias1506. Discussion153 6.1 Magnitude of effects153 6.2 Treatment alone is not enough159 6.3 The Cochrane Collaboration Review161 6.4 Characteristics of an ideal study162 6.5 Implications for programmes163 6.6 Conclusions166Acknowledgements167References167Appendix: Summary of papers identified for the review177 Summary More than a half of the world's population are infected with one or more species of intestinal worms of which the nematodes Ascaris lumbricoides, Trichuris trichiura and the hookworms are the most common and important in terms of child health. This paper: (1) introduces the main species of intestinal worms with particular attention to intestinal nematodes; (2) examines how such worms may affect child growth and nutrition; (3) reviews the biological and epidemiological factors that influence the effects that worms can have on the growth and nutrition of children; (4) considers the many factors that can affect the impact of treatment with anthelmintic drugs; (5) presents the results of a meta‐analysis of studies of the effect of treating worm infections on child growth and nutrition; (6) discusses the results in terms of what is reasonable to expect that deworming alone can achieve; (7) describes some important characteristics of an ideal study of the effects of deworming; and (8) comments on the implications for programmes of recommendations concerning mass deworming.
The World Bank is publishing nine volumes of Disease Control Priorities, 3rd edition (DCP3) between 2015 and 2018. Volume 9, Improving Health and Reducing Poverty, summarises the main messages from all the volumes and contains cross-cutting analyses. This Review draws on all nine volumes to convey conclusions. The analysis in DCP3 is built around 21 essential packages that were developed in the nine volumes. Each essential package addresses the concerns of a major professional community (eg, child health or surgery) and contains a mix of intersectoral policies and health-sector interventions. 71 intersectoral prevention policies were identified in total, 29 of which are priorities for early introduction. Interventions within the health sector were grouped onto five platforms (population based, community level, health centre, first-level hospital, and referral hospital). DCP3 defines a model concept of essential universal health coverage (EUHC) with 218 interventions that provides a starting point for country-specific analysis of priorities. Assuming steady-state implementation by 2030, EUHC in lower-middle-income countries would reduce premature deaths by an estimated 4·2 million per year. Estimated total costs prove substantial: about 9·1% of (current) gross national income (GNI) in low-income countries and 5·2% of GNI in lower-middle-income countries. Financing provision of continuing intervention against chronic conditions accounts for about half of estimated incremental costs. For lower-middle-income countries, the mortality reduction from implementing the EUHC can only reach about half the mortality reduction in non-communicable diseases called for by the Sustainable Development Goals. Full achievement will require increased investment or sustained intersectoral action, and actions by finance ministries to tax smoking and polluting emissions and to reduce or eliminate (often large) subsidies on fossil fuels appear of central importance. DCP3 is intended to be a model starting point for analyses at the country level, but country-specific cost structures, epidemiological needs, and national priorities will generally lead to definitions of EUHC that differ from country to country and from the model in this Review. DCP3 is particularly relevant as achievement of EUHC relies increasingly on greater domestic finance, with global developmental assistance in health focusing more on global public goods. In addition to assessing effects on mortality, DCP3 looked at outcomes of EUHC not encompassed by the disability-adjusted life-year metric and related cost-effectiveness analyses. The other objectives included financial protection (potentially better provided upstream by keeping people out of the hospital rather than downstream by paying their hospital bills for them), stillbirths averted, palliative care, contraception, and child physical and intellectual growth. The first 1000 days after conception are highly important for child development, but the next 7000 days are likewise important and often neglected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.