Fine-grained monitoring of everyday appliances can provide better feedback to the consumers and motivate them to change behavior in order to reduce their energy usage. It also helps to detect abnormal power consumption events, long-term appliance malfunctions and potential safety concerns. Commercially available plug meters can be used for individual appliance monitoring but for an entire house, each such individual plug meters are expensive and tedious to setup. Alternative methods relying on Non-Intrusive Load Monitoring techniques help disaggregate electricity consumption data and learn about the individual appliance's power states and signatures. However fine-grained events (e.g., appliance malfunctions, abnormal power consumption, etc.) remain undetected and thus inferred contexts (such as safety hazards etc.) become invisible. In this work, we correlate an appliance's inherent acoustic noise with its energy consumption pattern individually and in presence of multiple appliances. We initially investigate classification techniques to establish the relationship between appliance power and acoustic states for efficient energy disaggregation and abnormal events detection. While promising, this approach fails when there are multiple appliances simultaneously in 'ON' state. To further improve the accuracy of our energy disaggregation algorithm, we propose a probabilistic graphical model, based on a variation of Factorial Hidden Markov Model (FHMM) for multiple appliances energy disaggregation. We combine our probabilistic model with the appliances acoustic analytics and postulate a hybrid model for energy disaggregation. Our approach helps to improve the performance of energy disaggregation algorithms and provide critical insights on appliance longevity, abnormal power consumption, consumer behavior and their everyday lifestyle activities. We evaluate the performance of our proposed algorithms on real data traces and show that the fusion of acoustic and power signatures can successfully detect a number of appliances with 95% accuracy.
Time series behavior of gas consumption is highly irregular, non-stationary, and volatile due to its dependency on the weather, users' habits and lifestyle. This complicates the modeling and forecasting of gas consumption with most of the existing time series modeling techniques, specifically when missing values and outliers are present. To demonstrate and overcome these problems, we investigate two approaches to model the gas consumption, namely Generalized Additive Models (GAM) and Long Short-Term Memory (LSTM). We perform our evaluations on two building datasets from two different continents. We present each selected feature's influence, the tuning parameters, and the characteristics of the gas consumption on their forecasting abilities. We compare the performances of GAM and LSTM with other state-of-the-art forecasting approaches. We show that LSTM outperforms GAM and other existing approaches, however, GAM provides better interpretable results for building management systems (BMS).
Modeling buildings' heat dynamics is a complex process which depends on various factors including weather, building thermal capacity, insulation preservation, and residents' behavior. Gray-box models offer an explanation of those dynamics, as expressed in a few parameters specific to built environments that can provide compelling insights into the characteristics of building artifacts. In this paper, we present a systematic study of Bayesian approaches to modeling buildings' parameters, and hence their thermal characteristics. We build a Bayesian state-space model that can adapt and incorporate buildings' thermal equations and postulate a generalized solution that can easily adapt prior knowledge regarding the parameters. We then show that a faster approximate approach using Variational Inference for parameter estimation can posit similar parameters' quantification as that of a more time-consuming Markov Chain Monte Carlo (MCMC) approach. We perform extensive evaluations on two datasets to understand the generative process and attest that the Bayesian approach is more interpretable. We further study the effects of prior selection on the model parameters and transfer learning, where we learn parameters from one season and reuse them to fit the model in other seasons. We perform extensive evaluations on controlled and real data traces to enumerate buildings' parameters within a 95% credible interval.
Providing itemized energy consumption in a utility bill is becoming a priority, and perhaps a business practice in the near term. In recent times, a multitude of systems have been developed such as smart plugs, smart circuit breakers etc., for non-intrusive load monitoring (NILM). They are integrated either with the smart meters or at the plug-levels to footprint appliance-level energy consumption patterns in an entire home environment. While deploying the existing technologies in a single home is feasible, scaling these technological advancements across thousands of homes in a region is not realized yet. This is primarily due to the cost, deployment complexity, and intrusive nature associated with these types of real deployment. Motivated by these shortcomings, in this paper we investigate the first step to address scalable disaggregation by proposing a disaggregation mechanism that works on a large dataset to accurately deconstruct the cumulative signals. We propose an iterative noise separation based approach to perform energy disaggregation using sparse coding based methodologies which work at the single ingress point of a home, i.e., at the meter level. We performed a ranked iterative signal removal methodology that effectively isolates appliances' individual signal waveform as noise on an aggregate energy datasets with moderate granularity (1 min). We performed experiments on real dataset and obtained approximately 94% energy disaggregation, i.e., disaggregated appliance-wise signal estimation accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.