In this study, we establish an approximate method which produces an approximate Hermite polynomial solution to a system of fractional order differential equations with variable coefficients. At collocation points, this method converts the mentioned system into a matrix equation which corresponds to a system of linear equations with unknown Hermite polynomial coefficients. Construction of the method on the aforementioned type of equations has been presented and tested on some numerical examples. Results related to the effectiveness and reliability of the method have been illustrated.
This paper focuses on the approximate solutions of the higher order fractional differential equations with multi terms by the help of Hermite Collocation method (HCM). This new method is an adaptation of Taylor's collocation method in terms of truncated Hermite Series. With this method, the differential equation is transformed into an algebraic equation and the unknowns of the equation are the coefficients of the Hermite series solution of the problem. This method appears as a useful tool for solving fractional differential equations with variable coefficients. To show the pertinent feature of the proposed method, we test the accuracy of the method with some illustrative examples and check the error bounds for numerical calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.