We introduce a new optimization procedure for Euclidean path integrals, which compute wave functionals in conformal field theories (CFTs). We optimize the background metric in the space on which the path integration is performed. Equivalently, this is interpreted as a position-dependent UV cutoff. For two-dimensional CFT vacua, we find the optimized metric is given by that of a hyperbolic space, and we interpret this as a continuous limit of the conjectured relation between tensor networks and Anti-de Sitter (AdS)/conformal field theory (CFT) correspondence. We confirm our procedure for excited states, the thermofield double state, the Sachdev-Ye-Kitaev model, and discuss its extension to higher-dimensional CFTs. We also show that when applied to reduced density matrices, it reproduces entanglement wedges and holographic entanglement entropy. We suggest that our optimization prescription is analogous to the estimation of computational complexity.
Abstract:We propose an optimization procedure for Euclidean path-integrals that evaluate CFT wave functionals in arbitrary dimensions. The optimization is performed by minimizing certain functional, which can be interpreted as a measure of computational complexity, with respect to background metrics for the path-integrals. In two dimensional CFTs, this functional is given by the Liouville action. We also formulate the optimization for higher dimensional CFTs and, in various examples, find that the optimized hyperbolic metrics coincide with the time slices of expected gravity duals. Moreover, if we optimize a reduced density matrix, the geometry becomes two copies of the entanglement wedge and reproduces the holographic entanglement entropy. Our approach resembles a continuous tensor network renormalization and provides a concrete realization of the proposed interpretation of AdS/CFT as tensor networks. The present paper is an extended version of our earlier report arXiv:1703.00456 and includes many new results such as evaluations of complexity functionals, energy stress tensor, higher dimensional extensions and time evolutions of thermofield double states.
Abstract:We study the two-point function for fermionic operators in a class of strongly coupled systems using the gauge-gravity correspondence. The gravity description includes a gauge field and a dilaton which determines the gauge coupling and the potential energy. Extremal black brane solutions in this system typically have vanishing entropy. By analyzing a charged fermion in these extremal black brane backgrounds we calculate the two-point function of the corresponding boundary fermionic operator. We find that in some region of parameter space it is of Fermi liquid type. Outside this region no well-defined quasiparticles exist, with the excitations acquiring a non-vanishing width at zero frequency. At the transition, the two-point function can exhibit non-Fermi liquid behaviour.
Extremal black branes are of interest because they correspond to the ground states of field theories at finite charge density in gauge/gravity duality. The geometry of such a brane need not be translationally invariant in the spatial directions along which it extends. A less restrictive requirement is that of homogeneity, which still allows points along the spatial directions to be related to each other by symmetries. In this paper, we find large new classes of homogeneous but anisotropic extremal black brane horizons, which could naturally arise in gauge/gravity dual pairs. In 4 + 1 dimensional spacetime, we show that such homogeneous black brane solutions are classified by the Bianchi classification, which is well known in the study of cosmology, and fall into nine classes. In a system of Einstein gravity with negative cosmological term coupled to one or two massive Abelian gauge fields, we find solutions with an additional scaling symmetry, which could correspond to the nearhorizon geometries of such extremal black branes. These solutions realize many of the Bianchi classes. In one case, we construct the complete extremal solution which asymptotes to AdS space. 4.2 Type VI, III and V 13 4.2.
We calculate the four point correlation function for scalar perturbations in the canonical model of slow-roll inflation. We work in the leading slow-roll approximation where the calculation can be done in de Sitter space. Our calculation uses techniques drawn from the AdS/CFT correspondence to find the wave function at late times and then calculate the four point function from it. The answer we get agrees with an earlier result in the literature, obtained using different methods. Our analysis reveals a subtlety with regard to the Ward identities for conformal invariance, which arises in de Sitter space and has no analogue in AdS space. This subtlety arises because in de Sitter space the metric at late times is a genuine degree of freedom, and hence to calculate correlation functions from the wave function of the Universe at late times, one must fix gauge completely. The resulting correlators are then invariant under a conformal transformation accompanied by a compensating coordinate transformation which restores the gauge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.