During the rainy season of 2001, the incidence of the dengue vectors Aedes aegypti and Ae. albopictus was examined in different habitats of two cities (Rio de Janeiro and Nova Iguaçu) in Rio de Janeiro State, Brazil, and in two cities (Palm Beach and Boca Raton) in Florida. Oviposition trap collections were performed in urban, suburban, and rural habitats in both areas. Our hypothesis that the abundances and frequencies of occurrence of Ae. aegypti and Ae albopictus are affected in opposite ways by increasing urbanization was only partially supported. City, habitat, and their interaction significantly affected the abundance of both species. Cities with high abundance of Ae. aegypti also had a high abundance of Ae. albopictus. The two species were most abundant in the cities of Rio de Janeiro state and the lowest in Boca Raton. Habitat had a significant but opposite effect on the abundances of Ae. aegypti and Ae. albopictus. In general, Ae. aegypti was most prevalent in highly urbanized areas and Ae. albopictus in rural, suburban, and vegetated urban areas in Rio de Janeiro state and Florida. However, abundances of the two species were similar in most suburban areas. Analyses of frequencies of occurrence showed an unexpected high level of co-occurrence of both species in the same oviposition trap. Despite the different geographical origins of Ae. albopictus in Brazil and the United States, the habitats used by this recent invader are remarkably similar in the two countries.
The first confirmed case of Zika virus infection in the Americas was reported in Northeast Brazil in May 2015, although phylogenetic studies indicate virus introduction as early as 2013. Zika rapidly spread across Brazil and to more than 50 other countries and territories on the American continent. The Aedes
aegypti mosquito is thought to be the principal vector responsible for the widespread transmission of the virus. However, sexual transmission has also been reported. The explosively emerging epidemic has had diverse impacts on population health, coinciding with cases of Guillain–Barré Syndrome and an unexpected epidemic of newborns with microcephaly and other neurological impairments. This led to Brazil declaring a national public health emergency in November 2015, followed by a similar decision by the World Health Organization three months later. While dengue virus serotypes took several decades to spread across Brazil, the Zika virus epidemic diffused within months, extending beyond the area of permanent dengue transmission, which is bound by a climatic barrier in the south and low population density areas in the north. This rapid spread was probably due to a combination of factors, including a massive susceptible population, climatic conditions conducive for the mosquito vector, alternative non-vector transmission, and a highly mobile population. The epidemic has since subsided, but many unanswered questions remain. In this article, we provide an overview of the discovery of Zika virus in Brazil, including its emergence and spread, epidemiological surveillance, vector and non-vector transmission routes, clinical complications, and socio-economic impacts. We discuss gaps in the knowledge and the challenges ahead to anticipate, prevent, and control emerging and re-emerging epidemics of arboviruses in Brazil and worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.