Dental practitioners may be at risk for exposure to Severe Acute Respiratory Syndrome Corona Virus 2 when performing aerosol generating procedures. Though recent evidence suggests that coronavirus may be transmitted through aerosol generating procedures, it is unknown whether common procedures performed in dental clinics generate aerosol. The aim of this study was to simultaneously quantify airborne concentrations of the bacteriophage MS2 near the oral cavity of a dental mannequin and behind personal protective equipment (i.e., face shield) of the practitioner during a simulated orthodontic debanding procedure. A deband was performed 10 times on a dental mannequin. Optical Particle Counters and SKC Biosamplers were used to measure particle concentration and to collect virus aerosol generated during the procedure, both near the oral cavity and behind the orthodontists face shield. A plaque assay was used to determine the viable virus airborne concentration. When comparing the two measuring locations, near the oral cavity and behind the clinician’s face shield, there was no statistically significant difference of virus concentrations or particle size distribution. This study suggests that debanding under these conditions generates live virus aerosol and a face shield does not provide increased protection from virus aerosol during the procedure.
Dental practitioners may be at risk for exposure to severe acute respiratory syndrome corona virus 2 when performing aerosol generating procedures. Though recent evidence suggests that coronavirus may be transmitted through aerosol generating procedures, it is unknown whether common procedures performed in dental clinics generate aerosol. The aim of this study was to simultaneously quantify airborne concentrations of the bacteriophage MS2 near the oral cavity of a dental mannequin and behind personal protective equipment (i.e., face shield) of the practitioner during a simulated orthodontic debanding procedure. A deband was performed eight times on a dental mannequin. Optical particle counters and SKC Biosamplers were used to measure particle concentration and to collect virus aerosol generated during the procedure, both near the oral cavity and behind the orthodontists face shield. A plaque assay was used to determine the viable virus airborne concentration. When comparing the two measuring locations, near the oral cavity and behind the clinician’s face shield, there was no statistically significant difference of virus concentrations or particle size distribution. This study suggests that debanding under these conditions generates live virus aerosol and a face shield does not provide increased protection from virus aerosol, but does provide some protection against splatter during the procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.