Lithium is one of the most widely used mood-stabilizing agents for the treatment of bipolar disorder. Although the underlying mechanism(s) of this mood stabilizer remains controversial, recent evidence linking lithium to neurotrophic/neuroprotective effects (Choi and Sung (2000) 1475, 225-230; Davies et al. (2000) 351, 95-105) suggests novel benefits of this drug in addition to mood stabilization. Here, we report that both lithium as well as valproic acid (VPA) inhibit beta-amyloid peptide (Abeta) production in HEK293 cells stably transfected with Swedish amyloid precursor protein (APP)(751) and in the brains of the PDAPP (APP(V717F)) Alzheimer's disease transgenic mouse model at clinically relevant plasma concentrations. Both lithium and VPA are known to be glycogen synthase kinase-3 (GSK3) inhibitors. Our studies reveal that GSK3beta is a potential downstream kinase, which modulates APP processing because inhibition of GSK3 activity by either a dominant negative GSK3beta kinase-deficient construct or GSK3beta antisense oligonucleotide mimics lithium and VPA effects. Moreover, lithium treatment abolished GSK3beta-mediated Abeta increase in the brains of GSK3beta transgenics and reduced plaque burden in the brains of the PDAPP (APP(V717F)) transgenic mice.
Uncoupling protein (UCP) gene expression is tightly restricted to thermogenic brown adipocytes and is rapidly activated by norepinephrine released after cold exposure. To identify cis-acting regulatory elements controlling this gene, a region encompassing 4.5 kilobases of DNA upstream of the transcription start site was analyzed using hybrid UCP-chloramphenicol acetyltransferase reporter gene constructs. Evidence for the presence of both tissue-specific and beta-adrenergic response elements in this 4.5-kilobase region was obtained by comparing the expression of these reporter genes in transfected brown adipocytes (in vitro differentiated), brown preadipocytes, white adipocytes, and Chinese hamster ovary (CHO) cells and from experiments in transgenic animals. Deletion analyses in transfected cells indicated that the minimal region exhibiting promoter activity and tissue specificity is located between -157 and -57 base pairs (bp). A 211-bp activator element located between -2494 and -2283 bp was necessary for full expression in brown adipocytes. This element also activated expression of the homologous -157-bp promoter and expression of a heterologous promoter in both brown adipocytes and CHO cells. A second region, downstream of the activator and possibly located between positions -400 and -157 bp, inhibited the UCP promoter in CHO cells. In mice transgenic for a chloramphenicol acetyltransferase reporter gene containing these elements, expression was both tissue specific and regulatable by environmental temperature changes. These results indicate that both positive and negative cis-acting elements participate in the regulation of UCP gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.