Interleukin (IL)-17 is the founding member of a novel family of inflammatory cytokines. While the pro-inflammatory properties of IL-17 are key to its host-protective capacity, unrestrained IL-17 signaling is associated with immunopathology, autoimmune disease and cancer progression. In this review, we discuss both the activators and the inhibitors of IL-17 signal transduction, and the physiological implications of these events. We highlight the surprisingly diverse means by which these regulators control expression of IL-17-dependent inflammatory genes, as well as the major target cells that respond to IL-17 signaling.
SUMMARY Interleukin-17 (IL-17) induces pathology in autoimmunity and infections; therefore constraint of this pathway is an essential component of its regulation. We demonstrate that the signaling intermediate MCPIP1 (also termed Regnase-1, encoded by Zc3h12a) is a feedback inhibitor of IL-17 receptor signal transduction. MCPIP1 knockdown enhanced IL-17-mediated signaling, requiring MCPIP1’s endoribonuclease but not deubiquitinase domain. MCPIP1 haploinsufficient mice showed enhanced resistance to disseminated Candida albicans infection, which was reversed in an Il17ra−/− background. Conversely, IL-17-dependent pathology in Zc3h12a+/− mice was exacerbated in both EAE and pulmonary inflammation. MCPIP1 degraded Il6 mRNA directly, but only modestly downregulated the IL-6 promoter. However, MCPIP1 strongly inhibited the Lcn2 promoter by regulating the mRNA stability of Nfkbiz, encoding the IκBζ transcription factor. Unexpectedly, MCPIP1 degraded Il17ra and Il17rc mRNA, independently of the 3’ UTR. The cumulative impact of MCPIP1 on IL-6, IκBζ and possibly IL-17R subunits results in a biologically relevant inhibition of IL-17 signaling.
Lymph node (LN) stromal cell populations expand during the inflammation that accompanies T cell activation. Interleukin 17 (IL-17)-producing T helper (TH17) cells promote inflammation through induction of cytokines and chemokines in peripheral tissues. We demonstrate a critical requirement for IL-17 in the proliferation of lymph node (LN) and spleen stromal cells, particularly fibroblastic reticular cells (FRCs), during experimental autoimmune encephalomyelitis and colitis. Without IL-17 receptor signaling, activated FRCs underwent cell cycle arrest and ultimately apoptosis, accompanied by signs of nutrient stress in vivo. IL-17 signaling in FRCs was not required for TH17 cell development, but failed FRC proliferation impaired germinal center formation and antigen-specific antibody production. IL-17 induction of the transcriptional coactivator IκBζ mediated increased glucose uptake and mitochondrial Cpt1a expression. Hence, IL-17 produced by locally differentiating TH17 cells is an important driver of inflamed LN stromal cell activation, through metabolic reprogramming required to support proliferation and survival.
Interleukin-17A stimulates immunity to fungal pathogens, but also contributes to autoimmune pathology. IL-17 is only a modest activator of transcription in experimental tissue culture settings. However, IL-17 controls post-transcriptional events that enhance the expression of target mRNAs. Here, we showed that the RNA-binding protein (RBP) Arid5a (AT-rich interactive domain-containing protein 5a) integrated multiple IL-17-driven signaling pathways through post-transcriptional control of mRNA. IL-17 induced expression of Arid5a, which was recruited to the adaptor TRAF2. Arid5a stabilized IL-17-induced cytokine transcripts by binding to their 3’ untranslated regions and also counteracted mRNA degradation mediated by the endoribonuclease MCPIP1 (Regnase-1). Arid5a inducibly associated with the eukaryotic translation initiation complex and facilitated the translation of the transcription factors (TFs) IκBξ (Nfkbiz) and C/EBPβ (Cebpb). These TFs in turn transactivated IL-17-dependent promoters. Together these data indicated that Arid5a orchestrates a feed-forward amplification loop, which promoted IL-17 signaling by controlling mRNA stability and translation.
The IL-17-family cytokines IL-17A and IL-17C drive the pathogenesis of psoriatic skin inflammation, and anti-IL-17A Abs were recently approved to treat human psoriasis. To date, little is known about mechanisms that restrain IL-17 cytokine-mediated signaling, particularly IL-17C. Here, we show that the endoribonuclease MCPIP1 (also known as Regnase-1) is markedly upregulated in human psoriatic skin lesions. Similarly, MCPIP1 was overexpressed in the imiquimod (IMQ)-driven mouse model of cutaneous inflammation. Mice with an MCPIP1 deficiency (Zc3h12a+/−) displayed no baseline skin inflammation, but they showed exacerbated pathology following IMQ treatment. Pathology in Zc3h12a+/− mice was associated with elevated expression of IL-17A- and IL-17C-dependent genes and also increased accumulation of neutrophils in skin. However, IL-17A and IL-17C expression was unaltered, suggesting that the increased inflammation in Zc3h12a+/− mice was due to enhanced downstream IL-17R signaling. Radiation chimeras demonstrated that MCPIP1 in non-hematopoietic cells is responsible for controlling skin pathology. Moreover, Zc3h12a+/−Il17ra−/− mice given IMQ showed almost no disease. To identify which IL-17RA ligand was essential, Zc3h12a+/−Il17a−/− and Zc3h12a+/−Il17c−/− mice were given IMQ; these mice had reduced but not fully abrogated pathology, indicating that MCPIP1 inhibits both IL-17A and IL-17C signaling. Confirming this hypothesis, Zc3h12a−/− keratinocytes showed increased responsiveness to IL-17A and IL-17C stimulation. Thus, MCPIP1 is a potent negative regulator of psoriatic skin inflammation through IL-17A and IL-17C. Moreover, MCPIP1 is the first described negative regulator of IL-17C signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.