Essentially all data mining algorithms assume that the datagenerating process is independent of the data miner's activities. However, in many domains, including spam detection, intrusion detection, fraud detection, surveillance and counter-terrorism, this is far from the case: the data is actively manipulated by an adversary seeking to make the classifier produce false negatives. In these domains, the performance of a classifier can degrade rapidly after it is deployed, as the adversary learns to defeat it. Currently the only solution to this is repeated, manual, ad hoc reconstruction of the classifier. In this paper we develop a formal framework and algorithms for this problem. We view classification as a game between the classifier and the adversary, and produce a classifier that is optimal given the adversary's optimal strategy. Experiments in a spam detection domain show that this approach can greatly outperform a classifier learned in the standard way, and (within the parameters of the problem) automatically adapt the classifier to the adversary's evolving manipulations.
We describe a framework for supporting arbitrarily complex SQL queries with "uncertain" predicates. The query semantics is based on a probabilistic model and the results are ranked, much like in Information Retrieval. Our main focus is query evaluation. We describe an optimization algorithm that can compute efficiently most queries. We show, however, that the data complexity of some queries is #P -complete, which implies that these queries do not admit any efficient evaluation methods. For these queries we describe both an approximation algorithm and a Monte-Carlo simulation algorithm.
We describe a framework for supporting arbitrarily complex SQL queries with "uncertain" predicates. The query semantics is based on a probabilistic model and the results are ranked, much like in Information Retrieval. Our main focus is query evaluation. We describe an optimization algorithm that can compute efficiently most queries. We show, however, that the data complexity of some queries is #P -complete, which implies that these queries do not admit any efficient evaluation methods. For these queries we describe both an approximation algorithm and a Monte-Carlo simulation algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.