Integrins are transmembrane heterodimeric receptors that contribute to diverse biological functions and play critical roles in many human diseases. Studies using integrin subunit knockout mice and inhibitory antibodies have identified important roles for nearly every integrin heterodimer and led to the development of a number of potentially useful therapeutics. One notable exception is the αvβ1 integrin. αv and β1 subunits are individually present in numerous dimer pairs, making it challenging to infer specific roles for αvβ1 by genetic inactivation of individual subunits, and αvβ1 complex–specific blocking antibodies do not yet exist. We therefore developed a potent and highly specific small-molecule inhibitor of αvβ1 to probe the function of this understudied integrin. We found that αvβ1, which is highly expressed on activated fibroblasts, directly binds to the latency-associated peptide of transforming growth factor–β1 (TGFβ1) and mediates TGFβ1 activation. Therapeutic delivery of this αvβ1 inhibitor attenuated bleomycin-induced pulmonary fibrosis and carbon tetrachloride–induced liver fibrosis, suggesting that drugs based on this lead compound could be broadly useful for treatment of diseases characterized by excessive tissue fibrosis.
Fibrosis is a common pathological sequela of tissue injury or inflammation, and is a major cause of organ failure. Subsets of fibroblasts contribute to tissue fibrosis in multiple ways, including generating contractile force to activate integrin-bound, latent TGFβ and secreting excess amounts of collagens and other extracellular matrix proteins (ECM) that make up pathologic scar. However, the precise fibroblast subsets that drive fibrosis have been poorly understood. In the absence of well-characterized markers, α-smooth muscle actin (αSMA) is often used to identify pathologic fibroblasts, and some authors have equated αSMA(+) cells with contractile myofibroblasts and proposed that these cells are the major source of ECM. Here, we investigated how well αSMA expression describes fibroblast subsets responsible for TGFβ activation and collagen production in three commonly used models of organ fibrosis that we previously reported could be inhibited by loss of αv integrins on all fibroblasts (using PDGFRβ-Cre). Interestingly, αSMA-directed deletion of αv integrins protected mice from CCl4-induced hepatic fibrosis, but not bleomycin-induced pulmonary or unilateral ureteral obstruction-induced renal fibrosis. Using Col-EGFP/αSMA-RFP dual reporter mice, we found that only a minority of collagen-producing cells coexpress αSMA in the fibrotic lung and kidney. Notably, Col-EGFP(+)αSMA-RFP(-) cells isolated from the fibrotic lung and kidney were equally capable of activating TGFβ as were Col-EGFP(+)αSMA-RFP(+) cells from the same organ, and this TGFβ activation was blocked by a TGFβ-blocking antibody and an inhibitor of nonmuscle myosin, respectively. Taken together, our results suggest that αSMA is an inconsistent marker of contractile and collagen-producing fibroblasts in murine experimental models of organ fibrosis.
Activated fibroblasts are deemed the main executors of organ fibrosis. However, regulation of the pathologic functions of these cells is poorly understood. PDGF receptor (PDGFR) is highly expressed in activated pericytes, a main source of fibroblasts. Studies using a PDGFR promoter-driven Cre system to delete v integrins in activated fibroblasts identified these integrins as core regulators of fibroblast activity across solid organs, including the kidneys. Here, we used the same PDGFR-Cre line to isolate and study renal fibroblasts We found that renal fibroblasts express threev integrins, namely v1, v3, and v5. Blockade of v1 prevented direct binding of fibroblasts to the latency-associated peptide of TGF-1 and prevented activation of the latent TGF- complex. Continuous administration of a recently described potent small molecule inhibitor of v1, compound 8, starting the day of unilateral ureteral obstruction operation, inhibited collagen deposition in the kidneys of mice 14 days later. Compound 8 also effectively attenuated renal failure, as measured by BUN levels in mice fed an adenine diet known to cause renal injury followed by fibrosis. Inhibition of v1 integrin could thus hold promise as a therapeutic intervention in CKD characterized by renal fibrosis.
The efficacy and feasibility of targeting transforming growth factor-β (TGFβ) in pulmonary fibrosis and lung vascular remodeling in systemic sclerosis (SSc) have not been well elucidated. In this study we analyzed how blocking TGFβ signaling affects pulmonary abnormalities in Fos-related antigen 2 (Fra-2) transgenic (Tg) mice, a murine model that manifests three important lung pathological features of SSc: fibrosis, inflammation, and vascular remodeling. To interrupt TGFβ signaling in the Fra-2 Tg mice, we used a pan-TGFβ-blocking antibody, 1D11, and Tg mice in which TGFβ receptor type 2 (Tgfbr2) is deleted from smooth muscle cells and myofibroblasts (α-SMA-Cre;Tgfbr2). Global inhibition of TGFβ by 1D11 did not ameliorate lung fibrosis histologically or biochemically, whereas it resulted in a significant increase in the number of immune cells infiltrating the lungs. In contrast, 1D11 treatment ameliorated the severity of pulmonary vascular remodeling in Fra-2 Tg mice. Similarly, genetic deletion of Tgfbr2 from smooth muscle cells resulted in improvement of pulmonary vascular remodeling in the Fra-2 Tg mice, as well as a decrease in the number of Ki67-positive vascular smooth muscle cells, suggesting that TGFβ signaling contributes to development of pulmonary vascular remodeling by promoting the proliferation of vascular smooth muscle cells. Deletion of Tgfbr2 from α-smooth muscle actin-expressing cells had no effect on fibrosis or inflammation in this model. These results suggest that efforts to target TGFβ in SSc will likely require more precision than simply global inhibition of TGFβ function.
Integrin avb8 on T cells suppresses anti-tumor immunity in multiple models and is a promising target for tumor immunotherapy Graphical abstract Highlights d ITGB8 on CD4+/CD25+ T cells activates latent TGF-b, causing tumor immunosuppression d Anti-ITGB8 therapy elicits tumor regression and durable antitumor immunity d CD8+T cells are essential for anti-tumor activity of anti-ITGB8 d Anti-ITGB8 synergizes with multiple immunomodulators in multiple tumor types
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.