BackgroundWhile primary immunodeficiencies (PID has been recognized in the west for decades, recognition has been delayed in the third world. This study attempts to detail the spectrum of PID, the therapy provided, and constraints in the diagnosis and treatment in a middle income country such as Sri Lanka.MethodsNine hundred and forty two patients with recurrent infections and features suggestive of immune deficiency, referred from the entire country in a 4 year period, to the sole immunology unit in Sri Lanka were included. The following tests were performed. Full blood counts, serum Immunoglobulin and complement C3 and C4 levels, functional antibody levels, enumeration of lymphocyte subsets, in vitro and in vivo T cell functional assays,, nitroblue tetrazolium assay to diagnose chronic granulomatous disease, hair shaft assay to diagnose Griscelli syndrome. Sequencing of the common gamma chain to identify x linked severe combined immune deficiency, and X linked agammaglobulinemia was confirmed by assaying for Btk mutations by single sequence conformation polymorphism. HIV/AIDS was excluded in all patients.ResultsSeventy three patients were diagnosed with a primary immune deficiency. The majority (60.27%) had antibody deficiency. Common variable immune deficiency was the commonest (28.76%), followed by X linked agammaglobulinemia (XLA) (20.54%). Five patients had possible hyper IgM syndrome.Ten patients had severe combined immune deficiency (SCID), including 2 with x linked SCID, in addition to DiGeorge syndrome (2), ataxia telangiectasia (6), autosomal dominant hyper IgE syndrome (2), chronic granulomatous disease (4), leucocyte adhesion deficiency type 1 (2) and Griscelli syndrome (3).Patients with autoinflammatory, innate immune and complement defects could not be identified due to lack of facilities.ConclusionsAntibody deficiency is the commonest PID, as in the west.IgA deficiency is rare. Autoinflammatory diseases, innate immune and complement deficiencies could not be identified due to lack of diagnostic facilities. Lack of awareness of PID among adult physicians result in delay in treatment of adult patients. While treatment of antibody deficiencies provided in state hospitals has extended life expectancy, there is no treatment available for severe T cell defects.
BackgroundThe aetiology of anaphylaxis differs according to types of foods consumed, fauna and foliage and cultural practices. Although the aetiology of anaphylaxis in Western countries are well known, the causes in South Asian countries have not been reported. We sought to determine the causes of anaphylaxis in patients referred to an immunology clinic in Colombo, Sri Lanka.Methods238 episodes of anaphylaxis were reviewed in 188 patients who were referred and skin prick tests and in vitro tests (ImmunoCap) were carried out to assess the presence of allergen specific IgE. Clinical features and severity of anaphylaxis was also recorded along with treatment received.ResultsAnaphylaxis to food either following direct exposure 90/238 (37.5%) or after exercise in the form of food dependent exercise induced anaphylaxis 29/238 (12.2%) was the predominant cause of anaphylaxis. Allergy to cow’s milk and red meat, after immediate exposure, accounted for 66/238 (27.7%) of instances of all episodes of anaphylaxis and 66/90 (73.33%) of anaphylaxis due to food. Vaccines accounted for 28/238 (11.8%) of instances of anaphylaxis, especially among children. Of those who developed anaphylaxis to the MMR (n = 14), 71.4% of them had specific IgE to cow’s milk and 35.7% of them had specific IgE to beef. Of those who developed anaphylaxis to insect stings, 27/42 of these episodes occurred following stings of ants (family Formicidae). The predominant cause of anaphylaxis changed with the age, with food allergy being the most frequent trigger of anaphylaxis in childhood, while drug allergy and idiopathic anaphylaxis being more frequent after 30 years of age.ConclusionsIn this cohort, anaphylaxis to red meat appears to be the predominant cause of food induced anaphylaxis and presence of beef specific IgE and cow’s milk, appears to be a predisposing factor for vaccine induced anaphylaxis.
BackgroundChronic granulomatous disease (CGD) is a rare primary immunodeficiency of the phagocytic cells, which results in absent or diminished levels of microbicidal reactive oxygen species. The disease occurs due to germline mutations in the genes encoding the five subunits of NADPH oxidase complex. The present study is a pilot study to understand the clinical and genetic aspects of CGD in Sri Lanka.MethodsClinical records of thirteen CGD patients were analysed and compared with similar studies performed in different countries and regions to identify patterns in demographics, clinical manifestations and infectious agents. Genomic DNA and cDNA were analysed in eight patients to identify mutations in CYBB and NCF1 genes, thereby to ascertain the potential X-linked and autosomal recessive (AR) CGD patients.ResultsThe onset of symptoms in the patient cohort was very early (mean 4.6 months) compared to 20 months in India and 23.9 months in Latin America. Similarly, the age at diagnosis was lower (mean 1.6 years after birth) compared to other studies; 4.5 years in India and 6.1 years in Europe. Pulmonary manifestations were the most common (85%), followed by skin/subcutaneous infections (77%) and lymphadenopathy (62%). The death rate of local patients (38%) was higher than other countries (India 35%, Europe 20%). Majority (77%) were treated for tuberculosis at some point in life. Genetic analysis confirmed six out of eight patients as X-linked CGD cases with mutations in CYBB gene. A novel splice site mutation was identified in P-07 at position c.141+6 which resulted in the deletion of entire exon 2. Two siblings (P-05 and P-06) from consanguineous parents, were identified with AR-CGD based on the homozygous GT deletion mutation in NCF1 gene.ConclusionsThe clinical presentation, manifestations and genetic subtypes in the local cohort, appear to be comparable with global trends. Mycobacterial infections should be investigated and treated with more prominence. Effective treatment options are required to control the high mortality rate.
The aetiology of anaphylaxis ranges from food, insect venom, drugs and various chemicals. Some individuals do not develop anaphylaxis with the offending agent unless ingestion is related temporally to physical exertion, namely food dependent exercise induced anaphylaxis (FDEIA). The foods implicated are wheat, soya, peanut, milk and sea food. A retrospective study on patients with FDEIA from two Allergy clinics in Sri Lanka from 2011 to 2015 is reported. Patients were selected who fulfilled the following criteria: clinical diagnosis of anaphylaxis according to the World Allergy Organization (WAO) criteria, where the onset of symptoms was during exertion, within 4 h of ingesting a food, the ability to eat the implicated food independent of exercise, or exercise safely, if the food was not ingested in the preceding 4 h and an in vitro (ImmunoCap serum IgE to the food) or in vivo (skin prick test) test indicating evidence of sensitivity to the food. There were 19 patients (12 males: 7 females). The ages ranged from 9 to 45 (mean 22.9, median 19 years). Eight patients (42.1%) were in the 9–16 age group. Those below 16 years had a male:female ratio of 3:5, while for those above 16 years it was 9:2. Wheat was the only food implicated in FDEIA in all patients and was confirmed by skin prick testing, or by ImmunoCap specific IgE to wheat or ω − 5 gliadin. All patients had urticaria, while 5/19 (26.3%) had angioedema of the lips. Fifteen patients (78.9%) had shortness of breath or wheezing, while 8 (42.1%) had lost consciousness. Nine patients (47. 3%) had hypotension. Fourteen (73.6%) of our patients had severe reactions, with loss of consciousness or hypotension, while 5 (26.3%) had symptoms related to the gastrointestinal tract. One patient developed anaphylaxis on two occasions following inhalation of ganja, a local cannabis derivative along with the ingestion of wheat and exertion. Wheat is the main food implicated in FDEIA in Sri Lanka. A local cannabis derivative, ganja has been implicated as a cofactor for the first time.
Measurement of an individuals ability to respond to polysaccharide antigens is a crucial test to determine adaptive immunity. Currently the response to Pneumovax® is utilized but with the success of Prevnar®, measurement of the response to Pneumovax may be challenging. The aim of the study was to assess the response to Typhi Vi vaccination in both children and adult control groups and patients with primary immunodeficiency (PID). In the control groups, >95% of the individuals had pre Typhi Vi vaccination concentrations <100 U/mL and there was significant increase in concentration post Typhi Vi vaccination (p<0.0001) with>94% achieving ≥3 fold increase in concentration (FI). The response to Typhi Vi vaccination was significantly lower in both children (p = 0.006) and adult (p = 0.002) PID groups when compared to their control groups. 11% and 55% of the children and adult PID groups respectively did not obtain a response >3FI. There were no significant differences between the responses obtained in the children and adult PID groups. When all individuals with PID were separated into those with either hypogammaglobulinemia (HYPO) or common variable immunodeficiency (CVID), both groups had a significantly lower median FI than the control group (19, 95%CI 5–56 vs 59, 95%CI 7–237; p = 0.01 and 1, 95%CI 1–56 vs 32, 95%CI 5–136; p = 0.005). Further, a >3FI differentiated the antibody responses between both the CVID and HYPO groups and their control groups (AUC: 0.83, 95%CI: 0.65–1.00, p = 0.005 and 0.81, 95% CI: 0.65–0.97, p = 0.01). The data suggests that measurement of the response to Typhi Vi vaccination could represent a complementary assay for the assessment of the response to a polysaccharide vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.