These results add to evidence that long-term ingestion of inorganic arsenic can cause respiratory effects.
Chronic arsenic exposure is known to produce arsenicosis and cancer. To ascertain whether perturbation of methylation plays a role in such carcinogenesis, the degree of methylation of p53 and p16 gene in DNA obtained from blood samples of people chronically exposed to arsenic and skin cancer subjects was studied. Methylation-specific restriction endonuclease digestion followed by polymerase chain reaction (PCR) of gene p53 and bisulfite treatment followed by methylation-sensitive PCR of gene p16 have been carried out to analyze the methylation status of the samples studied. Significant DNA hypermethylation of promoter region of p53 gene was observed in DNA of arsenic-exposed people compared to control subjects. This hypermethylation showed a dose-response relationship. Further, hypermethylation of p53 gene was also observed in arsenic-induced skin cancer patients compared to subjects having skin cancer unrelated to arsenic, though not at significant level. However, a small subgroup of cases showed hypomethylation with high arsenic exposure. Significant hypermethylation of gene p16 was also observed in cases of arsenicosis exposed to high level of arsenic. In man, arsenic has the ability to alter DNA methylation patterns in gene p53 and p16, which are important in carcinogenesis.
During 1998-2000, the authors investigated relations between lung function, respiratory symptoms, and arsenic in drinking water among 287 study participants, including 132 with arsenic-caused skin lesions, in West Bengal, India. The source population involved 7,683 participants who had been surveyed for arsenic-related skin lesions in 1995-1996. Respiratory symptoms were increased among men with arsenic-caused skin lesions (versus those without lesions), particularly "shortness of breath at night" (odds ratio (OR) = 2.8, 95% confidence interval (CI): 1.1, 7.6) and "morning cough" (OR = 2.8, 95% CI: 1.2, 6.6) in smokers and "shortness of breath ever" (OR = 3.8, 95% CI: 0.7, 20.6) in nonsmokers. Among men with skin lesions, the average adjusted forced expiratory volume in 1 second (FEV1) was reduced by 256.2 ml (95% CI: 113.9, 398.4; p < 0.001) and the average adjusted forced vital capacity (FVC) was reduced by 287.8 ml (95% CI: 134.9, 440.8; p < 0.001). In men, a 100-microg/liter increase in arsenic level was associated with a 45.0-ml decrease (95% CI: 6.2, 83.9) in FEV1 (p = 0.02) and a 41.4-ml decrease (95% CI: -0.7, 83.5) in FVC (p = 0.054). Women had lower risks than men of developing skin lesions and showed little evidence of respiratory effects. In this study, consumption of arsenic-contaminated water was associated with respiratory symptoms and reduced lung function in men, especially among those with arsenic-related skin lesions.
Current arsenic concentrations in urine, which reflect all sources of recent exposure, including water and food, were associated with small decrements in intellectual testing in school-aged children in West Bengal. We did not see associations between long-term water arsenic concentrations and intellectual function.
There has been widespread speculation about whether nutritional deficiencies increase the susceptibility to arsenic health effects. This is the first study to investigate whether dietary micronutrient and macronutrient intake modulates the well-established human risk of arsenic-induced skin lesions, including alterations in skin pigmentation and keratoses. The study was conducted in West Bengal, India, which along with Bangladesh constitutes the largest population in the world exposed to arsenic from drinking water. In this case-control study design, cases were patients with arsenicinduced skin lesions and had < 500 µg/L arsenic in their drinking water. For each case, an age-and sex-matched control was selected from participants of a 1995-1996 cross-sectional survey, whose drinking water at that time also contained < 500 µg/L arsenic. Nutritional assessment was based on a 24-hr recall for major dietary constituents and a 1-week recall for less common constituents. Modest increases in risk were related to being in the lowest quintiles of intake of animal protein [odds ratio (OR) = 1.94; 95% confidence interval (CI), 1.05-3.59], calcium (OR = 1.89; 95% CI, 1.04-3.43), fiber (OR = 2.20; 95% CI, 1.15-4.21), and folate (OR = 1.67; 95% CI, 0.87-3.2). Conditional logistic regression suggested that the strongest associations were with low calcium, low animal protein, low folate, and low fiber intake. Nutrient intake was not related to arsenic exposure. We conclude that low intake of calcium, animal protein, folate, and fiber may increase susceptibility to arsenic-caused skin lesions. However, in light of the small magnitude of increased risks related to these dietary deficiencies, prevention should focus on reducing exposure to arsenic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.