Background Any contamination in the human body can prompt changes in blood cell morphology and various parameters of cells. The minuscule images of blood cells are examined for recognizing the contamination inside the body with an expectation of maladies and variations from the norm. Appropriate segmentation of these cells makes the detection of a disease progressively exact and vigorous. Microscopic blood cell analysis is a critical activity in the pathological analysis. It highlights the investigation of appropriate malady after exact location followed by an order of abnormalities, which assumes an essential job in the analysis of various disorders, treatment arranging, and assessment of results of treatment. Methodology A survey of different areas where microscopic imaging of blood cells is used for disease detection is done in this paper. Research papers from this area are obtained from a popular search engine, Google Scholar. The articles are searched considering the basics of blood such as its composition followed by staining of blood, that is most important and mandatory before microscopic analysis. Different methods for classification, segmentation of blood cells are reviewed. Microscopic analysis using image processing, computer vision and machine learning are the main focus of the analysis and the review here. Methodologies employed by different researchers for blood cells analysis in terms of these mentioned algorithms is the key point of review considered in the study. Results Different methodologies used for microscopic analysis of blood cells are analyzed and are compared according to different performance measures. From the extensive review the conclusion is made. Conclusion There are different machine learning and deep learning algorithms employed by researchers for segmentation of blood cell components and disease detection considering microscopic analysis. There is a scope of improvement in terms of different performance evaluation parameters. Different bio-inspired optimization algorithms can be used for improvement. Explainable AI can analyze the features of AI implemented system and will make the system more trusted and commercially suitable.
<abstract> <p>The diagnosis of leukemia involves the detection of the abnormal characteristics of blood cells by a trained pathologist. Currently, this is done manually by observing the morphological characteristics of white blood cells in the microscopic images. Though there are some equipment- based and chemical-based tests available, the use and adaptation of the automated computer vision-based system is still an issue. There are certain software frameworks available in the literature; however, they are still not being adopted commercially. So there is a need for an automated and software- based framework for the detection of leukemia. In software-based detection, segmentation is the first critical stage that outputs the region of interest for further accurate diagnosis. Therefore, this paper explores an efficient and hybrid segmentation that proposes a more efficient and effective system for leukemia diagnosis. A very popular publicly available database, the acute lymphoblastic leukemia image database (ALL-IDB), is used in this research. First, the images are pre-processed and segmentation is done using Multilevel thresholding with Otsu and Kapur methods. To further optimize the segmentation performance, the Learning enthusiasm-based teaching-learning-based optimization (LebTLBO) algorithm is employed. Different metrics are used for measuring the system performance. A comparative analysis of the proposed methodology is done with existing benchmarks methods. The proposed approach has proven to be better than earlier techniques with measuring parameters of PSNR and Similarity index. The result shows a significant improvement in the performance measures with optimizing threshold algorithms and the LebTLBO technique.</p> </abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.