The replacement of metals in catalytic processes is highly demanded to improve sustainability and economic growth. Poor stability and metal leaching are the main drawbacks of metal-based catalytic reactions. This work represented the use of nitrogen and sulfur-co-doped mesoporous carbon material ((N, S)-MPC) as a metal-free catalyst for the degradation of 4-nitrophenol (4-NP) as a priority pollutant announced by the Environmental Protection Agency through the persulfate-based advanced oxidation process. A low amount of (N, S)-MPC catalyst (0.3 g/L) exhibited superior performance for the degradation of 4-NP within 3 h at room temperature and unadjusted pH. The COD removal was calculated to be 76% using (N, S)-MPC catalyst. Interestingly, the degradations kinetics of 4-NP followed the zero-order kinetics with the rate constant of 0.505 min−1. The radical quenching experiment was accomplished to investigate the activation pathway of degradation. A real sample from an oil and gas company was treated with the (N, S)-MPC catalyst, which showed excellent total decontamination of 61%. The recyclability and stability of the catalyst have been evaluated for three runs. Owing to the obvious benefits such as high efficiency, metal-free nature, and recyclability, the presented catalyst can improve pollutant removal from aqueous media and practical environmental remediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.