In architecture, Integrated Energy Design (IED) entails considering energy during each design phase, especially in the early design stage. The form of a building is an important factor in this stage due to its considerable impact on energy consumption. Finding the optimal form is a time-consuming process, and computational design techniques can help designers to facilitate this process and achieve a design solution with acceptable performance in terms of CO2 emission. Moreover, the surrounding buildings, trees and urban elements can affect the energy and daylight of the project by casting shadows. Considering all these elements throughout the design process can be very demanding and take several working days. Today, digital tools make it possible to parametrically analyze morphological characteristics of buildings to identify the most efficient solution. The present study proposes an environmental-simulation based design workflow to be used in the early design stage to determine the building’s form parameters (height, angle,..) in a given urban area based on the weather data and the surrounding context. This process is done by parametric design tools and environmental simulations in Rhino3D®, Grasshopper®, and ladybug Tools®. The typical Norwegian cabin’s form parameters are applied in the visual coding program (Grasshopper®) to generate the initial geometry for optimization. Due to the great effect of the energy consumption on the CO2 emission, minimizing energy, maximizing thermal comfort and the sky view percentage were the main objectives. To test the workflow the weather data of Tromsø (Norway) and 3d model of the surrounding context of a design location was applied as inputs. The output of this application was several building’s form alternatives for that specific location. This study showed using the digital tools and parametric design thinking can help the designers to apply the climatic data in the design process to narrow down the design solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.