Silicon nanowires (Si NWs) have been identified as an excellent candidate material for the replacement of graphite in anodes, allowing for a significant boost in the capacity of lithium‐ion batteries (LIBs). Herein, high‐density Si NWs are grown on a novel 3D interconnected network of binary‐phase Cu‐silicide nanofoam (3D CuxSiy NF) substrate. The nanofoam facilitates the uniform distribution of well‐segregated and small‐sized catalyst seeds, leading to high‐density/single‐phase Si NW growth with an areal‐loading in excess of 1.0 mg cm−2 and a stable areal capacity of ≈2.0 mAh cm−2 after 550 cycles. The use of the 3D CuxSiy NF as a substrate is further extended for Al, Bi, Cu, In, Mn, Ni, Sb, Sn, and Zn mediated Si NW growth, demonstrating the general applicability of the anode architecture.
Silicon nanowires (Si NWs) are a promising anode material for lithium‐ion batteries (LIBs) due to their high specific capacity. Achieving adequate mass loadings for binder‐free Si NWs is restricted by low surface area, mechanically unstable and poorly conductive current collectors (CCs), as well as complicated/expensive fabrication routes. Herein, a tunable mass loading and dense Si NW growth on a conductive, flexible, fire‐resistant, and mechanically robust interwoven stainless‐steel fiber cloth (SSFC) using a simple glassware setup is reported. The SSFC CC facilitates dense growth of Si NWs where its open structure allows a buffer space for expansion/contraction during Li‐cycling. The Si NWs@SSFC anode displays a stable performance for 500 cycles with an average Coulombic efficiency of >99.5%. Galvanostatic cycling of the Si NWs@SSFC anode with a mass loading of 1.32 mg cm−2 achieves a stable areal capacity of ≈2 mAh cm−2 at 0.2 C after 200 cycles. Si NWs@SSFC anodes with different mass loadings are characterized before and after cycling by scanning and transmission electron microscopy to examine the effects of Li‐cycling on the morphology. Notably, this approach allows the large‐scale fabrication of robust and flexible binder‐free Si NWs@SSFC architectures, making it viable for practical applications in high energy density LIBs.
Precise control over the shape and elemental composition of colloidal nanocrystals (NCs) is challenging, especially for anisotropic growth. While the most studied nanocrystal syntheses involve homogenous nucleation and growth, the...
The development of a water-soluble, perylenemonoimide (PMI) dye-doped polymer nanoparticle (PNP) with NIR emission for live-cell imaging is demonstrated. The large Stokes-shifted NIR emission is due to confined nanospace-induced aggregation offered by the polymer matrix. Later, folic acid functionalised PNP (PNP-FA) is successfully employed to differentiate folate receptor positive and negative cancer cells.
Two-dimensional (2D) semiconductor nanocrystals display unconventional physical and opto-electronic properties due to their ultrathin and unique electronic structures. Since the success of Cd-based photoemissive nanocrystals, the development of sustainable and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.