We perform a systematic study of the 56Ni mass (M Ni) of 27 stripped-envelope supernovae (SESNe) by modeling their light-curve tails, highlighting that use of “Arnett’s rule” overestimates M Ni for SESNe by a factor of ∼2. Recently, Khatami & Kasen presented a new model relating the peak time (t p) and luminosity (L p) of a radioactively powered supernova to its M Ni that addresses several limitations of Arnett-like models, but depends on a dimensionless parameter, β. Using observed t p, L p, and tail-measured M Ni values for 27 SESNe, we observationally calibrate β for the first time. Despite scatter, we demonstrate that the model of Khatami & Kasen with empirically calibrated β values provides significantly improved measurements of M Ni when only photospheric data are available. However, these observationally constrained β values are systematically lower than those inferred from numerical simulations, primarily because the observed sample has significantly higher (0.2–0.4 dex) L p for a given M Ni. While effects due to composition, mixing, and asymmetry can increase L p none can explain the systematically low β values. However, the discrepancy can be alleviated if ∼7%–50% of L p for the observed sample comes from sources other than radioactive decay. Either shock cooling or magnetar spin-down could provide the requisite luminosity. Finally, we find that even with our improved measurements, the M Ni values of SESNe are still a factor of ∼3 larger than those of hydrogen-rich Type II SNe, indicating that these supernovae are inherently different in terms of the initial mass distributions of their progenitors or their explosion mechanisms.
We present a wide-field optical imaging search for electromagnetic counterparts to the likely neutron star–black hole (NS–BH) merger GW190814/S190814bv. This compact binary merger was detected through gravitational waves by the LIGO/Virgo interferometers, with masses suggestive of an NS–BH merger. We imaged the LIGO/Virgo localization region using the MegaCam instrument on the Canada–France–Hawaii Telescope (CFHT). We describe our hybrid observing strategy of both tiling and galaxy-targeted observations, as well as our image differencing and transient detection pipeline. Our observing campaign produced some of the deepest multiband images of the region between 1.7 and 8.7 days post-merger, reaching a 5σ depth of g > 22.8 (AB mag) at 1.7 days and i > 23.1 and i > 23.9 at 3.7 and 8.7 days, respectively. These observations cover a mean total integrated probability of 67.0% of the localization region. We find no compelling candidate transient counterparts to this merger in our images, which suggests that the lighter object was tidally disrupted inside of the BH’s innermost stable circular orbit, the transient lies outside of the observed sky footprint, or the lighter object is a low-mass BH. We use 5σ source detection upper limits from our images in the NS–BH interpretation of this merger to constrain the mass of the kilonova ejecta to be M ej ≲ 0. 015M ⊙ for a “blue” ( ) kilonova and M ej ≲ 0. 04M ⊙ for a “red” ( ) kilonova. Our observations emphasize the key role of large-aperture telescopes and wide-field imagers such as CFHT MegaCam in enabling deep searches for electromagnetic counterparts to gravitational-wave events.
Early light from core-collapse supernovae, now detectable in high-cadence surveys, holds clues to a star and its environment just before it explodes. However, effects that alter the early light have not been fully explored. We highlight the possibility of non-radial flows at the time of shock breakout. These develop in sufficiently non-spherical explosions if the progenitor is not too diffuse. When they do develop, non-radial flows limit ejecta speeds and cause ejecta-ejecta collisions. We explore these phenomena and their observational implications, using global, axisymmetric, non-relativistic FLASH simulations of simplified polytropic progenitors, which we scale to representative stars. We develop a method to track photon production within the ejecta, enabling us to estimate band-dependent light curves from adiabatic simulations. Immediate breakout emission becomes hidden as an oblique flow develops. Non-spherical effects lead the shock-heated ejecta to release a more constant luminosity at a higher, evolving color temperature at early times, effectively mixing breakout light with the early light curve. Collisions between non-radial ejecta thermalize a small fraction of the explosion energy; we address emission from these collisions in a subsequent paper.
SN 2018aoz is a Type Ia SN with a B-band plateau and excess emission in infant-phase light curves ≲1 day after the first light, evidencing an over-density of surface iron-peak elements as shown in our previous study. Here, we advance the constraints on the nature and origin of SN 2018aoz based on its evolution until the nebular phase. Near-peak spectroscopic features show that the SN is intermediate between two subtypes of normal Type Ia: core normal and broad line. The excess emission may be attributable to the radioactive decay of surface iron-peak elements as well as the interaction of ejecta with either the binary companion or a small torus of circumstellar material. Nebular-phase limits on Hα and He i favor a white dwarf companion, consistent with the small companion size constrained by the low early SN luminosity, while the absence of [O i] and He i disfavors a violent merger of the progenitor. Of the two main explosion mechanisms proposed to explain the distribution of surface iron-peak elements in SN 2018aoz, the asymmetric Chandrasekhar-mass explosion is less consistent with the progenitor constraints and the observed blueshifts of nebular-phase [Fe ii] and [Ni ii]. The helium-shell double-detonation explosion is compatible with the observed lack of C spectral features, but current 1D models are incompatible with the infant-phase excess emission, B max – V max color, and weak strength of nebular-phase [Ca ii]. Although the explosion processes of SN 2018aoz still need to be more precisely understood, the same processes could produce a significant fraction of Type Ia SNe that appear to be normal after ∼1 day.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.