Preparation history and processing have a crucial influence on which configurational state material systems assume. Glasses and nanocrystalline materials usually reside in nonequilibrium states at room temperature, and as a consequence, their thermodynamic, dynamical, and physical properties change with time—even years after manufacture. Such changes, entitled aging or structural relaxation, are all manifestations of paths taken in the underlying potential energy landscape. Since it is highly multidimensional, there is a need to reduce complexity. Here, we demonstrate how to construct a one-dimensional pathway across the energy landscape using strain/volume as an order parameter. On its way to equilibrium, we map the system’s release of energy by calorimetry and the spectrum of barrier heights by dilatometry. The potential energy of the system is reduced by approximately kBT during relaxation, whereas the crossing of saddle points requires activation energies in the order of 1eV/atom relative to the energy minima. As a consequence, the system behaves as a bad global minimum finder. We also discovered that aging is accompanied by a decrease in the non-ergodicity parameter, suggesting a decline in density fluctuations during aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.