A number of mechanisms have been described by which African trypanosomes undergo the genetic switches that differentially activate their variant surface glycoprotein genes (VSGs) and bring about antigenic variation. These mechanisms have been observed mainly in trypanosome lines adapted, by rapid syringe passaging, to laboratory conditions. Such "monomorphic" lines, which routinely yield only the proliferative bloodstream form and do not develop through their life cycle, have VSG switch rates up to 4 or 5 orders of magnitude lower than those of nonadapted lines. We have proposed that nonadapted, or pleomorphic, trypanosomes normally have an active VSG switch mechanism, involving gene duplication, that is depressed, or from which a component is absent, in monomorphic lines. We have characterized 88 trypanosome clones from the first two relapse peaks of a single rabbit infection with pleomorphic trypanosomes and shown that they represent 11 different variable antigen types (VATs). The pattern of appearance in the first relapse peak was generally reproducible in three more rabbit infections. Nine of these VATs had activated VSGs by gene duplication, the tenth possibly also had done so, and only one had activated a VSG by the transcriptional switch mechanism that predominates in monomorphic lines. At least 10 of the donor genes have telomeric silent copies, and many reside on minichromosomes. It appears that trypanosome antigenic variation is dominated by one, relatively highly active, mechanism rather than by the plethora of pathways described before.
Borrelia hermsii, an agent of relapsing fever, avoids the host's immune response by means of multiphasic antigenic variation. Serotype specificity is determined by variable antigens called the Vmp lipoproteins. Through recombination between linear plasmids a formerly silent vmp gene replaces another vmp gene at a telomeric expression locus. We examined strain HS1 borreliae before and after a switch from serotype 7 to serotype 21. The nucleotide sequences of 5' regions of silent and expressed vmp7 and vmp21 were determined. Silent and active vmp7 and vmp21 genes shared a block of homologous sequences surrounding their 5' ends. Sequences upstream of silent vmp7 and vmp21 genes lacked the promoter and substantially differed from each other. In this antigenic switch a vmp gene was activated by a recombination that placed it downstream of a promoter.
The relapsing fever agent Borrelia hermsii avoids the host's immune response by the strategy of multiphasic antigenic variation. A given Borrelia cell can express one of a number of alleles for polymorphic outer-membrane proteins, known as Vmp proteins. The genes for the variant-specific Vmp proteins of serotypes 7 and 21 of B. hermsii strain HS1 were sequenced. The genes, which were designated vmp7 and vmp21, were obtained from populations of borreliae before and after a switch in serotypes from 7 to 21. The analysis showed that vmp7 and vmp21 are 77% identical in terms of their coding sequence. The deduced translation products of vmp7 and vmp21 are polypeptides of 369 (37.2 kD) and 364 amino acids (37.1 kD), respectively. Vmp7 and Vmp21 have sequence features of prokaryotic lipoproteins and are processed as such during expression in E. coli. The secondary structure predictions of the Vmp proteins reveals analogous structures to the VSG proteins of the African trypanosome.
The African relapsing fever spirochete Borrelia crocidurae forms aggregates with erythrocytes, resulting in a delayed immune response. Mice were infected with B. crocidurae and monitored during 50 days after infection. Spirochetes were observed extravascularly at day 2 after infection. Two days later, inflammatory responses, cell death, and tissue damage were evident. The pathologic responses in lungs and kidneys were similar, whereas the symptoms in the brains were delayed, with a less pronounced inflammatory response. Microemboli were found in the blood vessels, possibly a result of the erythrocyte aggregation. The B. crocidurae invasion emerged more rapidly than has been described for Lyme disease-causing Borrelia species. In addition to erythrocyte rosetting, the presence of extravascular B. crocidurae indicates a novel route for these bacteria to propagate and cause damage in the mammalian host. The histopathologic findings in this study may explain the clinical manifestations of human relapsing fever.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.