for any 0 = a ∈ C ∞ (T * (M)). By oriented bicharacteristics, we mean the positive flow of the Hamilton vector field H Re (ap) on Re (ap) = 0. These are also called semi-bicharacteristics.
Condition (1.2) is invariant under conjugation with elliptic Fourier integral operators
We give a proof of the Nirenberg-Treves conjecture: that local solvability of principal-type pseudo-differential operators is equivalent to condition (Ψ). This condition rules out sign changes from − to + of the imaginary part of the principal symbol along the oriented bicharacteristics of the real part. We obtain local solvability by proving a localizable a priori estimate for the adjoint operator with a loss of two derivatives (compared with the elliptic case).The proof involves a new metric in the Weyl (or Beals-Fefferman) calculus which makes it possible to reduce to the case when the gradient of the imaginary part is nonvanishing, so that the zeroes form a smooth submanifold. The estimate uses a new type of weight, which measures the changes of the distance to the zeroes of the imaginary part along the bicharacteristics of the real part between the minima of the curvature of the zeroes. By using condition (Ψ) and the weight, we can construct a multiplier giving the estimate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.