The last decade has seen the rise of neuromorphic architectures based on artificial spiking neural networks, such as the SpiNNaker, TrueNorth, and Loihi systems. The massive parallelism and colocating of computation and memory in these architectures potentially allows for an energy usage that is orders of magnitude lower compared to traditional Von Neumann architectures. However, to date a comparison with more traditional computational architectures (particularly with respect to energy usage) is hampered by the lack of a formal machine model and a computational complexity theory for neuromorphic computation. In this paper we take the first steps towards such a theory. We introduce spiking neural networks as a machine model where-in contrast to the familiar Turing machine-information and the manipulation thereof are co-located in the machine. We introduce canonical problems, define hierarchies of complexity classes and provide some first completeness results.
e last decade has seen the rise of neuromorphic architectures based on arti cial spiking neural networks, such as the SpiNNaker, TrueNorth, and Loihi systems.e massive parallelism and colocating of computation and memory in these architectures potentially allows for an energy usage that is orders of magnitude lower compared to traditional Von Neumann architectures. However, to date a comparison with more traditional computational architectures (particularly with respect to energy usage) is hampered by the lack of a formal machine model and a computational complexity theory for neuromorphic computation. In this paper we take the rst steps towards such a theory. We introduce spiking neural networks as a machine model where-in contrast to the familiar Turing machine-information and the manipulation thereof are co-located in the machine. We introduce canonical problems, de ne hierarchies of complexity classes and provide some rst completeness results.
We examine a parameterized complexity class for randomized computation where only the error bound and not the full runtime is allowed to depend more than polynomially on the parameter, based on a proposal by Kwisthout in [15,16]. We prove that this class, for which we propose the shorthand name PPPT, has a robust definition and is in fact equal to the intersection of the classes paraBPP and PP. This result is accompanied by a Cook-style proof of completeness for the corresponding promise class (under a suitable notion of reduction) for parameterized approximation versions of the inference problem in Bayesian networks, which is known to be PP-complete. With these definitions and results in place, we proceed by showing how it follows from this that derandomization is equivalent to efficient deterministic approximation methods for the inference problem. Furthermore, we observe as a straightforward application of a result due to Drucker in [8] that these problems cannot have polynomial size randomized kernels unless the polynomial hierarchy collapses to the third level. We conclude by indicating potential avenues for further exploration and application of this framework.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.