Sustainability and flexibility are crucial aspects in todays' manufacturing processes. Within this study an innovative approach of modular machine tool frames (MMTF) equipped with micro system technology is presented that aims at enhancing flexibility of mutable production processes. This new approach extends the existing reconfigurable manufacturing systems (RMS). MMTF goes beyond the platform approach via minimizing the machine tool frame parts used for the building block system of manufacturing cells. The concept has been realized by integration of modularized microelectronics and actuators enabling for integrity and accuracy of the machine tool frame. In this contribution, sustainable hotspots for the production of the MMTF are identified via a tiered life cycle sustainability assessment. From these findings, new approaches are derived that provide for a reasonable usage of mechanical and electronic components in MMTF for sustainable value creation.
The supply of critical metals like gallium, germanium, indium and rare earths elements (REE) is of technological, economic and strategic relevance in the manufacturing of electrical and electronic equipment (EEE). Recycling is one of the key strategies to secure the long-term supply of these metals. The dissipation of the metals related to the low concentrations in the products and to the configuration of the life cycle (short use time, insufficient collection, treatment focusing on the recovery of other materials) creates challenges to achieve efficient recycling. This article assesses the available data and sets priorities for further research aimed at developing solutions to improve the recycling of seven critical metals or metal families (antimony, cobalt, gallium, germanium, indium, REE and tantalum). Twenty-six metal applications were identified for those six metals and the REE family. The criteria used for the assessment are (i) the metal criticality related to strategic and economic issues; (ii) the share of the worldwide mine or refinery production going to EEE manufacturing; (iii) rough estimates of the concentration and the content of the metals in the products; (iv) the accuracy of the data already available; and (v) the occurrence of the application in specific WEEE groups. Eight applications were classified as relevant for further research, including the use of antimony as a flame retardant, gallium and germanium in integrated circuits, rare earths in phosphors and permanent magnets, cobalt in batteries, tantalum capacitors and indium as an indium-tin-oxide transparent conductive layer in flat displays.
Planned obsolescence has recently been a common allegation to manufacturers, but proof apart from isolated cases is missing. This paper analyses the situation for smartphones, looks at use- and lifetime of smartphones and the underlying reasons for their obsolescence. Surveys show that a majority of consumers believes in "planned obsolescence" as a fact on the market and would like to have more durable products. Regarding smartphones, broken screens and bad battery performance are often reported problems. At the same time, most phones are still functioning when being replaced after the average use time of two years. How do these two aspects combine? Short product cycles, new functionalities and features trigger replacement purchases (functional and psychological obsolescence) more strongly than broken devices. Necessary repair of products is expensive due to miniaturized product design, glued in batteries, and the limited availability of replacement parts (economical obsolescence). Besides, buying new products is often subsidized by provider contracts
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.