Whereas there is evidence that mixed-species approaches to production forestry in general can provide positive outcomes relative to monocultures, it is less clear to what extent multiple benefits can be derived from specific mixed-species alternatives. To provide such insights requires evaluations of an encompassing suite of ecosystem services, biodiversity, and forest management considerations provided by specific mixtures and monocultures within a region. Here, we conduct such an assessment in Sweden by contrasting even-aged Norway spruce (Piceaabies)-dominated stands, with mixed-species stands of spruce and birch (Betula pendula or B. pubescens), or spruce and Scots pine (Pinussylvestris). By synthesizing the available evidence, we identify positive outcomes from mixtures including increased biodiversity, water quality, esthetic and recreational values, as well as reduced stand vulnerability to pest and pathogen damage. However, some uncertainties and risks were projected to increase, highlighting the importance of conducting comprehensive interdisciplinary evaluations when assessing the pros and cons of mixtures.
Highlights• Growth models based on historical growth data gave reliable growth predictions up to the century shift.• Detailed single tree growth models had lower precision for estimation of total growth than one single stand-based model. • The prediction error was in average about 15% and did not increase with extended prediction period.
AbstractThe performance of growth models implemented in the Swedish Forest Planning System Heureka was evaluated. Four basal area growth models were evaluated by comparing their predictions to data from five-year growth records for 1711 permanent sample plots of the National Forest Inventory (NFI-data). Also, two alternative implementations of Heureka, including a combined stand-and tree-level basal area growth model and a single tree-level model, respectively, were evaluated using data from 57 blocks in a thinning experiment (GG-data) involving Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst) in which the trees were monitored for 30 years after the first thinning. The predicted volume growth was also compared to observed values. Growth models based on data from 1970's and 1980's overestimated growth in the NFI test plots from the early 2000's by about 3%. Stand-level models had larger precision than tree-level models. Basal area growth was underestimated in dense NFI-plots and overestimated in non-thinned GG-plots, illustrating an un-solved modelling problem. Basal area growth was overestimated by 2-5% also in the GG-plots over the whole observation period. Volume growth was however accurately predicted for pine and underestimated by 2% for spruce. The relative prediction error did not increase with increasing length of prediction period. Thinning response models calibrated with GG-data worked well in the total application and produced growth levels for different thinning alternatives in line with observations.
Continuous-cover forestry (CCF) has been recognized for the production of multiple ecosystem services, and is seen as an alternative to clear-cut forestry (CF). Despite the increasing interest, it is still not well described how CCF would affect the carbon balance and the resulting climate benefit from the forest in relation to CF. This study compares carbon balances of CF and CCF, applied as two alternative land-use strategies for a heterogeneous Norway spruce (Picea abies) stand. We use a set of models to analyze the long-term effects of different forest management and wood use strategies in Sweden on carbon dioxide emissions and carbon stock changes. The results show that biomass growth and yield is more important than the choice of silvicultural system per se. When comparing CF and CCF assuming similar growth, extraction and product use, only minor differences in long-term climate benefit were found between the two principally different silvicultural systems.Electronic supplementary materialThe online version of this article (doi:10.1007/s13280-015-0756-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.