The welded structures used in the naval field are generally subjected to fluctuating stress over time. In some structural welded details, due to changing loading conditions, significant elastic-plastic deformation can arise, which may lead to the failure of the structure after a relatively low number of cycles. The aim of this scientific work was to investigate the behavior of welded T-joints under low-cycle fatigue using full-field techniques: digital image correlation and infrared thermography. Low-cycle fatigue tests were carried out on welded ''small-scale'' specimens with the aim of obtaining loading and boundary conditions similar to those that occur in ''large-scale'' components in their real operating conditions. A nonlinear finite element analysis was also performed. The material curves, relative to different zones (base material, heat-affected zone, weld), were obtained by hardness measurements, which were done by means of a fully automated hardness scanner with high resolution. This innovative technique, based on the ultrasonic contact impedance method, allowed to identify the different zones (base material, heat-affected zone, weld metal) and to assess their cyclic curves, which were considered in the finite element model. Finally, the finite element model was validated experimentally comparing the results with the measurements obtained using the digital image correlation technique. The applied procedure allows providing useful information to the development of models for the prediction of fracture and fatigue behavior of the welded joints under the low-cycle fatigue loading.
A procedure using digital image correlation (DIC) to detect cracks on welded specimens during fatigue tests on resonance testing machines is presented. It is intended as a practical and reproducible procedure to identify macroscopic cracks at an early stage and monitor crack propagation during fatigue tests. It consists of strain field measurements at the weld using DIC. Images are taken at fixed load cycle intervals. Cracks become visible in the computed strain field as elevated strains. This way, the whole width of a small-scale specimen can be monitored to detect where and when a crack initiates. Subsequently, it is possible to monitor the development of the crack length. Because the resulting images are saved, the results are verifiable and comparable. The procedure is limited to cracks initiating at the surface and is intended for fatigue tests under laboratory conditions. By visualizing the crack, the presented procedure allows direct observation of macrocracks from their formation until rupture of the specimen. Video Link The video component of this article can be found at https://www.jove.com/video/60390/ With the advance of computational technologies, DIC is becoming more and more popular for industrial and research applications. Several commercial measurement software systems as well as open-source software are available 1. The proposed procedure offers another use of a technology already available in an increasing number of research facilities in mechanical and civil engineering. Compared to visual inspections or dye penetration testing, the proposed procedure is not based on subjective perception, which depends on an operator's experience and the local geometry at the weld toe. Even with high magnification it may be challenging to detect cracks at an early stage (i.e., crack initiation), especially if the exact location is not known in advance. Furthermore, using DIC the results are saved and therefore reproducible and comparable, whereas visual inspection is possible only momentarily. Using a full-field measurement the procedure allows monitoring the whole width of the specimen or length of the weld. Using strain gauges, it would be necessary to apply several gauges over the specimen width, because their measurement is localized. The changes in the strain gauge signal would depend on the distance and the position relative to the crack. The result would depend on whether the crack would initiate in between two gauges or by chance in front of one.
Fatigue tests on welded small-scale specimens often do not show a distinct residual stress influence. An exception is longitudinal stiffeners, which are therefore frequently used to study the influence of welding residual stresses on fatigue. The results are not directly transferable to other weld geometries because the residual stress distribution depends on the weld geometries. In the presented investigation, fatigue tests on multilayer K-butt weld and longitudinal stiffener specimens were performed. The tests were carried out in the as-welded and stress-relieved conditions at different load ratios. Initiation of macroscopic cracks was detected using digital image correlation. This allowed determining the influence of welding residual stresses on the initiation of macroscopic cracks, crack propagation and total fatigue life for both investigated weld geometries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.