Terpenoids can be found in almost all forms of life; however, the biosynthesis of bacterial terpenoids has not been intensively studied. This study reports the identification and functional characterization of the gene cluster CYP264B1-geoA from Sorangium cellulosum So ce56. Expression of the enzymes and synthesis of their products for NMR analysis and X-ray diffraction were carried out by employing an Escherichia coli whole-cell conversion system that provides the geoA substrate farnesyl pyrophosphate through simultaneous overexpression of the mevalonate pathway genes. The geoA product was identified as a novel sesquiterpene, and assigned NMR signals unambiguously proved that geoA is an (+)-eremophilene synthase. The very tight binding of (+)-eremophilene (∼0.40 μM), which is also available in S. cellulosum So ce56, and its oxidation by CYP264B1 suggest that the CYP264B1-geoA gene cluster is required for the biosynthesis of (+)-eremophilene derivatives.
CYP106A2 is known as a 15β-hydroxylase, but also shows minor 11α-hydroxylase activity for progesterone. 11α-Hydroxyprogesterone is an important pharmaceutical compound with anti-androgenic and blood-pressure-regulating activity. This work therefore focused on directing the regioselectivity of the enzyme towards hydroxylation at position 11 in the C ring of the steroid through a combination of saturation mutagenesis and rational site-directed mutagenesis. With the aid of data from a homology model of CYP106A2 containing docked progesterone, together with site-directed mutagenesis of active-site residues (Lisurek et al. ChemBioChem 2008, 9, 1439-1449), a saturation mutagenesis library at positions A395 and G397 was created. Screening of the library identified the mutants A395I and A395W/G397K as having 11α-hydroxylase activities 8.9 and 11.5 times higher than that of the wild type (WT). In the next step, additional mutations were integrated by a rational site-directed mutagenesis approach to increase the catalytic efficiency. Of the 40 candidates analyzed, the mutants A106T/A395I, A106T/A395I/R409L, and T89N/A395I turned out to display increased 11α-hydroxylase selectivities and activities relative to the WT (14.3-, 12.6-, and 11.8-fold increases in selectivity and 39.3-, 108-, and 24.4- in k(cat)/K(m)). In the last step of the study, the best mutants were applied in a whole-cell biotransformation. In these experiments the production (percentage) of 15β-hydroxyprogesterone decreased from 50.4 % (wild type) to 4.8 % (mutant T89N/A395I), whereas that of 11α-hydroxyprogesterone increased from 27.7 to 80.9 %, thus demonstrating an impressive regioselectivity.
This paper is dedicated to Professor Yoshinori Asakawa for his 65 th birthday. Two recombinant, stereospecific monoterpene synthases, a (-)-limonene synthase (CsTPS1) and a (+)-α-pinene synthase (CsTPS2), encoded by Cannabis sativa L. cv. 'Skunk' trichome mRNA, have been isolated and characterized. Recombinant CsTPS1 showed a K m value of 6.8 μM, a V max of 1.1 x 10-4 µmol/min and V max /K m of 0.016; the pH optimum was determined at pH 6.5, and a temperature optimum at 40°C. Recombinant CsTPS2 showed a K m value of 10.5 µM, a V max of 2.2 x 10-4 µmol/min and V max /K m of 0.021; the pH optimum was determined at pH 7.0, and a temperature optimum at 30°C. Phylogenetic analysis showed that both CsTPSs group within the angiosperms and belong to the Tpsb subgroup of monoterpene synthases. The enzymatic products (-)-limonene and (+)-α-pinene were detected as natural products in C. sativa trichomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.