Abstract. In late May 2005 unusual high levels of solar ultraviolet radiation were observed over central Europe. In Northern Germany the measured irradiance of erythemally effective radiation exceeded the climatological mean by more than about 20%. An extreme low ozone event for the season coincided with high solar elevation angles and high pressure induced clear sky conditions leading to the highest value of erythemal UV-radiation ever observed over this location in May since 1994. This hereafter called "ozone mini-hole" was caused by an elevation of tropopause height accompanied with a poleward advection of ozone-poor air from the tropics. The resultant increase in UV-radiation is of particular significance for human health. Dynamically induced low ozone episodes that happen in late spring can considerably enhance the solar UV-radiation in mid latitudes and therefore contribute to the UV-burden of people living in these regions.
Abstract. The detection of cloudiness is investigated by means of partial and total cloud amount estimations from pyrgeometer radiation measurements and visible all-sky imager observations. The measurements have been performed in Westerland, a seaside resort on the North Sea island of Sylt, Germany, during summer 2005.An improvement to previous studies on this subject resulting in the first time partial cloud amounts (PCAs), defined as cloud amounts without high clouds calculated from longwave downward radiation (LDR) according to the AP-CADA algorithm (Dürr and Philipona, 2004), are validated against both human observations from the National Meteorological Servive DWD at the nearby airport of Sylt and digital all-sky imaging. The aim is to establish the APCADA scheme at a coastal midlatitude site for longterm observations of cloud cover and to quantify errors resulting from the different methods of detecting cloudiness.Differences between the resulting total cloud amounts (TCAs), defined as cloud amount for all-cloud situations, derived from the camera images and from human observations are within ±1 octa in 72% and within ±2 octa in 85% of the cases. Compared to human observations, PCA measurements, according to APCADA, underestimate the observed cloud cover in 47% of all cases and the differences are within ±1 octa in 60% and ±2 octa in 74% of all cases. Since high cirrus clouds can not be derived from LDR, separate comparisons for all cases without high clouds have been performed showing an agreement within ±1(2) octa in 73(90)% for PCA and also for camera-derived TCA. For this coastal mid-latitude site under investigation, we find similar Correspondence to: A. Macke (amacke@ifm-geomar.de) though slightly smaller agreements to human observations as reported by Dürr and Philipona (2004). Though limited to daytime, the cloud cover retrievals from the sky imager are not really affected by cirrus clouds and provide a more reliable cloud climatology for all-cloud conditions than AP-CADA.
Climatological reference data serve as validation of regional climate models, as the boundary condition for the model runs, and as input for assimilation systems used by reanalyses. Within the framework of the interdisciplinary research program Climate Water Navigation (KLIWAS): Impacts of Climate Change on Waterways and Navigation of the German Federal Ministry of Transport and Digital Infrastructure, a new climatology of the North Sea and adjacent regions was developed in an joint effort by the Federal Maritime and Hydrographic Agency, the German Weather Service [Deutscher Wetterdienst (DWD)], and the Integrated Climate Data Center (ICDC) of the University of Hamburg. Long-term records of monthly and annual mean 2-m air temperature, dewpoint temperature, and sea level pressure data from 1950 to 2010 were calculated on a horizontal 1° × 1° grid. All products were based on quality-controlled data from DWD’s Marine Data Centre. Correction methods were implemented for each parameter to reduce the sampling error resulting from the sparse coverage of observations in certain regions. Comparisons between sampling error estimates based on ERA-40 and the climatology products show that the sampling error was reduced effectively. The climatologies are available for download on the ICDC’s website and will be updated regularly regarding new observations and additional parameters. An extension to the Baltic Sea is in progress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.