The main aim of randomized search heuristics is to produce good approximations of optimal solutions within a small amount of time. In contrast to numerous experimental results, there are only a few theoretical ones on this subject. We consider the approximation ability of randomized search heuristics for the class of covering problems and compare single-objective and multi-objective models for such problems. For the VertexCover problem, we point out situations where the multi-objective model leads to a fast construction of optimal solutions while in the single-objective case even no good approximation can be achieved within expected polynomial time. Examining the more general SetCover problem we show that optimal solutions can be approximated within a factor of log n, where n is the problem dimension, using the multi-objective approach while the approximation quality obtainable by the single-objective approach in expected polynomial time may be arbitrarily bad.
Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C. (2010). Approximating Covering Problems by Randomized Search Heuristics Using Multi-Objective Models. Evolutionary Computation, 18 (4), 617-633.The main aim of randomized search heuristics is to produce good approximations of optimal solutions within a small amount of time. In contrast to numerous experimental results, there are only a few theoretical explorations on this subject. We consider the approximation ability of randomized search heuristics for the class of covering problems and compare single-objective and multi-objective models for such problems. For the VertexCover problem, we point out situations where the multi-objective model leads to a fast construction of optimal solutions while in the single-objective case, no good approximation can be achieved within the expected polynomial time. Examining the more general SetCover problem, we show that optimal solutions can be approximated within a logarithmic factor of the size of the ground set, using the multi-objective approach, while the approximation quality obtainable by the single-objective approach in expected polynomial time may be arbitrarily bad.Peer reviewe
Successful applications of evolutionary algorithms show that certain variation operators can lead to good solutions much faster than other ones. We examine this behavior observed in practice from a theoretical point of view and investigate the effect of an asymmetric mutation operator in evolutionary algorithms with respect to the runtime behavior. Considering the Eulerian cycle problem we present runtime bounds for evolutionary algorithms using an asymmetric operator which are much smaller than the best upper bounds for a more general one. In our analysis it turns out that a plateau which both algorithms have to cope with changes its structure in a way that allows the algorithm to obtain an improvement much faster. In addition, we present a lower bound for the general case which shows that the asymmetric operator speeds up computation by at least a linear factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.