Middle East respiratory syndrome coronavirus (MERS-CoV) has been shown to infect both humans and dromedary camels using dipeptidyl peptidase-4 (DPP4) as its receptor. The distribution of DPP4 in the respiratory tract tissues of humans and camels reflects MERS-CoV tropism. Apart from dromedary camels, insectivorous bats are suggested as another natural reservoir for MERS-like-CoVs. In order to gain insight on the tropism of these viruses in bats, we studied the DPP4 distribution in the respiratory and extra-respiratory tissues of two frugivorous bat species (Epomophorus gambianus and Rousettus aegyptiacus) and two insectivorous bat species (Pipistrellus pipistrellus and Eptesicus serotinus). In the frugivorous bats, DPP4 was present in epithelial cells of both the respiratory and the intestinal tract, similar to what has been reported for camels and humans. In the insectivorous bats, however, DPP4 expression in epithelial cells of the respiratory tract was almost absent. The preferential expression of DPP4 in the intestinal tract of insectivorous bats, suggests that transmission of MERS-like-CoVs mainly occurs via the fecal-oral route. Our results highlight differences in the distribution of DPP4 expression among MERS-CoV susceptible species, which might influence variability in virus tropism, pathogenesis and transmission route.
To estimate the veterinary importance of Batai virus (BATV), we investigated the presence of BATV-specific antibodies and BATV RNA in 548 bovines from southwest Germany, and we demonstrated that 3 cattle serum samples contained BATV-neutralizing antibodies, resulting in a seroprevalence of 0.55%. Thus, our results confirm local transmission and indicate cattle as potential hosts of BATV in southwest Germany.
Rift Valley fever phlebovirus (RVFV), the causative agent of an emerging zoonotic disease in Africa and Arabia, can infect a variety of species, predominantly ruminants, camelids, and humans. While clinical symptoms are mostly absent in adult ruminants and camelids, RVFV infection may lead to a serious, sometimes fatal disease in humans. Virus transmissions between individuals and between species mainly occur through mosquito bites, but direct or even indirect contact with infectious materials may also result in infection. Although the main reservoir of the virus is not yet identified, small mammals such as rodents and bats may act as amplifying hosts. We therefore inoculated Rousettus aegyptiacus fruit bats that are abundant in northern Africa with the vaccine strain MP-12, in order to elucidate the general competence of this species for virus propagation and transmission. We were able to detect the RVFV genome in the spleen of each of these animals, and re-isolated the virus from the spleen and liver of some animals. Moreover, we were able to identify the Gc RVFV surface antigen in mild subacute multifocal necrotizing hepatic lesions of one bat which was sacrificed 7 days post exposure. These findings demonstrate that Rousettus aegyptiacus fruit bats can propagate RVFV.
Middle East respiratory syndrome coronavirus (MERS-CoV) has been shown to infect both humans and dromedary camels using dipeptidyl peptidase-4 (DPP4) as its receptor. The distribution of DPP4 in the respiratory tract tissues of humans and camels reflects MERS-CoV tropism. Apart from dromedary camels, insectivorous bats are suggested as another natural reservoir for MERS-like-CoVs. In order to gain insight on the tropism of these viruses in bats, we studied the DPP4 distribution in the respiratory and extra-respiratory tissues of two frugivorous bat species (Epomophorus gambianus and Rousettus aegyptiacus) and two insectivorous bat species (Pipistrellus pipistrellus and Eptesicus serotinus). In the frugivorous bats, DPP4 was present in epithelial cells of both the respiratory and the intestinal tract, similar to what has been reported for camels and humans. In the insectivorous bats, however, DPP4 expression in epithelial cells of the respiratory tract was almost absent. The preferential expression of DPP4 in the intestinal tract of insectivorous bats, suggests that transmission of MERS-like-CoVs mainly occurs via the fecal-oral route. Our results highlight differences in the distribution of DPP4 expression among MERS-CoV susceptible species, which might influence variability in virus tropism, pathogenesis and transmission route.Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in the human population in 2012 and has been causing multiple outbreaks of human disease, mainly in the Arabian Peninsula 1 . The dromedary camel (Camelus dromedarius) has been shown to be the reservoir host for primary human infections 2-8 , although other susceptible animals 9-11 , including bats 12,13 , are suspected also to be hosts for this virus. MERS-like-CoVs have been sequenced from bat samples, mainly from insectivorous bats, but they have not yet been successfully isolated [14][15][16][17][18][19][20][21] . Screening of over 5000 insectivorous bats from Ghana, Ukraine, Romania, Germany, and the Netherlands showed that MERS-CoV-like viruses were detected in 24.9% of Nycteris bats and 14.7% of Pipistrelle bats 17 .MERS-CoV uses dipeptidyl peptidase-4 (DPP4) as its receptor to infect its target cells, including bat cells 22 . Analysis of DPP4 sequences from different bat species and in-vitro infection studies with various bat cell lines suggested that multiple bat species are susceptible to MERS-CoV 12,21,23 . MERS-like-CoVs probably also use DPP4 as indicated by studies on the Tylonycteris bat CoV HKU4, one of the MERS-like-CoVs 21 . HKU4 uses DPP4 to infect both bat and human cells in vitro 24,25 . It is known that DPP4 is differently distributed in the respiratory tract of humans and other susceptible livestock animals, including dromedary camels 9,26 . DPP4 expression in the nasal epithelium of the camel, llama, and pig allows them to develop upper respiratory tract infection upon intranasal inoculation with MERS-CoV 2,9,26 , while in humans, DPP4 is exclusively expressed in the lower respiratory tract epithelium,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.