We present a comprehensive analytical comparison of four types of proton imaging set-ups and, to this end, develop a mathematical framework to calculate the width of the uncertainty envelope around the most likely proton path depending on set-up geometry, detector properties, and proton beam parameters. As a figure of merit for the spatial resolution achievable with each set-up, we use the frequency [Formula: see text] at which the modular transfer function of a density step decreases below 10%. We verify the analytical results with Monte Carlo simulations. We find that set-ups which track the angle and position of individual protons in front of and behind the phantom would yield an average spatial resolution of 0.3-0.35 lp mm assuming realistic geometric parameters (i.e. 30-40 cm distance between detector and phantom, 15-20 cm phantom thickness). For set-ups combining pencil beam scanning with either a position sensitive detector, e.g. an x-ray flat panel, or with a position insensitive detector, e.g. a range telescope, we find an average spatial resolution of about 0.1 lp mm for an 8 mm FWHM beam spot size. The pixel information improves the spatial resolution by less than 10%. In both set-up types, performance can be significantly improved by reducing the pencil beam size down to 2 mm FWHM. In this case, the achievable spatial resolution reaches about 0.25 lp mm. Our results show that imaging set-ups combining double scattering with a pixel detector can provide sufficient spatial resolution only under very stringent conditions and are not ideally suited for computed tomography applications. We further propose a region-of-interest method for set-ups with a pixel detector to filter out protons which have undergone nuclear reactions and discuss the impact of tracker detector uncertainties on the most likely path.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.