There exist several results on deciding termination and computing runtime bounds for triangular weakly non-linear loops (twn-loops). We show how to use results on such subclasses of programs where complexity bounds are computable within incomplete approaches for complexity analysis of full integer programs. To this end, we present a novel modular approach which computes local runtime bounds for subprograms which can be transformed into twn-loops. These local runtime bounds are then lifted to global runtime bounds for the whole program. The power of our approach is shown by our implementation in the tool KoAT which analyzes complexity of programs where all other state-of-the-art tools fail.
There exist several results on deciding termination and computing runtime bounds for triangular weakly non-linear loops (twn-loops). We show how to use results on such subclasses of programs where complexity bounds are computable within incomplete approaches for complexity analysis of full integer programs. To this end, we present a novel modular approach which computes local runtime bounds for subprograms which can be transformed into twn-loops. These local runtime bounds are then lifted to global runtime bounds for the whole program. The power of our approach is shown by our implementation in the tool $$\textsf {KoAT}$$
KoAT
which analyzes complexity of programs where all other state-of-the-art tools fail.
In [16], we developed an approach for automatic complexity analysis of integer programs, based on an alternating modular inference of upper runtime and size bounds for program parts. In this paper, we show how recent techniques to improve automated termination analysis of integer programs (like the generation of multiphase-linear ranking functions and control-flow refinement) can be integrated into our approach for the inference of runtime bounds. The power of the resulting approach is demonstrated by an extensive experimental evaluation with our new reimplementation of the corresponding tool KoAT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.