We study an energy functional for computing optical flow that combines three assumptions: a brightness constancy assumption, a gradient constancy assumption, and a discontinuity-preserving spatio-temporal smoothness constraint. In order to allow for large displacements, linearisations in the two data terms are strictly avoided. We present a consistent numerical scheme based on two nested fixed point iterations. By proving that this scheme implements a coarse-tofine warping strategy, we give a theoretical foundation for warping which has been used on a mainly experimental basis so far. Our evaluation demonstrates that the novel method gives significantly smaller angular errors than previous techniques for optical flow estimation. We show that it is fairly insensitive to parameter variations, and we demonstrate its excellent robustness under noise.We gratefully acknowledge partial funding by the Deutsche Forschungsgemeinschaft (DFG).
In this paper, we suggest a variational model for optic flow computation based on non-linearised and higher order constancy assumptions. Besides the common grey value constancy assumption, also gradient constancy, as well as the constancy of the Hessian and the Laplacian are proposed. Since the model strictly refrains from a linearisation of these assumptions, it is also capable to deal with large displacements. For the minimisation of the rather complex energy functional, we present an efficient numerical scheme employing two nested fixed point iterations. Following a coarse-to-fine strategy it turns out that there is a theoretical foundation of so-called warping techniques hitherto justified only on an experimental basis. Since our algorithm consists of the integration of various concepts, ranging from different constancy assumptions to numerical implementation issues, a detailed account of the effect of each of these concepts is included in the experimental section. The superior performance of the proposed method shows up by significantly smaller estimation errors when compared to previous techniques. Further experiments also confirm excellent robustness under noise and insensitivity to parameter variations.
The proposed algorithm offers the possibility to incorporate additional a priori knowledge-in terms of few landmarks-provided by a human expert into a non-rigid registration process.
Optic flow describes the displacement field in an image sequence. Its reliable computation constitutes one of the main challenges in computer vision, and variational methods belong to the most successful techniques for achieving this goal. Variational methods recover the optic flow field as a minimiser of a suitable energy functional that involves data and smoothness terms. In this paper we present a survey on different model assumptions for each of these terms and illustrate their impact by experiments. We restrict ourselves to rotationally invariant convex functionals with a linearised data term. Such models are appropriate for small displacements. Regarding the data term, constancy assumptions on the brightness, the gradient, the Hessian, the gradient magnitude, the Laplacian, and the Hessian determinant are investigated. Local integration and nonquadratic penalisation are considered in order to improve robustness under noise. With respect to the smoothness term, we review a recent taxonomy that links regularisers to diffusion processes. It allows to distinguish five types of regularisation strategies: homogeneous, isotropic image-driven, anisotropic image-driven, isotropic flow-driven, and anisotropic flow-driven. All these regularisations can be performed either in the spatial or the spatiotemporal domain. After discussing well-posedness results for convex optic flow functionals, we sketch some numerical ideas in order to achieve realtime performance on a standard PC by means of multigrid methods, and we survey a simple and intuitive confidence measure.
We present a super fast variational algorithm for the challenging problem of multimodal image registration. It is capable of registering full-body CT and PET images in about a second on a standard CPU with virtually no memory requirements. The algorithm is founded on a Gauss-Newton optimization scheme with specifically tailored, mathematically optimized computations for objective function and derivatives. It is fully parallelized and perfectly scalable, thus directly suitable for usage in many-core environments. The accuracy of our method was tested on 21 PET-CT scan pairs from clinical routine. The method was able to correct random distortions in the range from -10 cm to 10 cm translation and from -15° to 15° degree rotation to subvoxel accuracy. In addition, it exhibits excellent robustness to noise
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.