Ammonoids reached their greatest diversity during the Triassic period. In the early Middle Triassic (Anisian) stage, ammonoid diversity was dominated by representatives of the family Ceratitidae. High taxonomic diversity can, however, be decoupled from their morphologic disparity. Due to its high phenotypic variability, the high diversity of ceratitids of the Anisian of Nevada was initially assumed to be caused by artificial over-splitting. This study aims to contribute data to settle this issue by applying geometric morphometrics methods, using landmarks and semi-landmarks, in the study of ontogenetic cross-sections of ammonoids for the first time. The results reveal that alterations in ontogenetic trajectories, linked to heterochronic processes, lead to the morphologic diversification of the species studied herein. Our knowledge, based on these ontogenetic changes, challenge the traditional treatment of species using solely adult characters for their distinction. This study furthermore demonstrates that the high diversity of the Anisian ammonoid assemblages of Nevada based on the traditional nomenclatoric approach is regarded to be reasonably accurate.
The Late Cretaceous echinoid genus Micraster (irregular echinoids, Spatangoida) is one of the most famous examples of a continuous evolutionary lineage in invertebrate palaeontology. The influence of the environment on the phenotype, however, was not tested so far. This study analyses differences in phenotypical variations within three populations of Micraster (Gibbaster) brevis from the early Coniacian, two from the Münsterland Cretaceous Basin (Germany) and one from the North Cantabrian Basin (Spain). The environments of the Spanish and the German sites differed by their sedimentary characteristics, which are generally a crucial factor for morphological adaptations in echinoids. Most of the major phenotypical variations (position of the ambitus, periproct and development of the subanal fasciole) among the populations can be linked to differences in their host sediments. These phenotypic variations are presumed to be an expression of phenotpic plasticiy, which has not been considered in Micraster in previous studies. Two populations (Erwitte area, Germany; Liencres area, Spain) were tested for stochastic variation (fluctuating asymmetry) due to developmental instability, which was present in all studied traits. However, differences in the amount of fluctuating asymmetry between both populations were recognised only in one trait (amount of pore pairs in the anterior paired petals). The results strengthen previous assumptions on ecophenotypic variations in Micraster.
Spines of irregular echinoids occur in very high abundance in each specimen, and display distinct architecture as a result of the specialized functions of the spines; however, studies on spine microstructure in atelostomate echinoids have rarely been carried out. Accordingly, little is known about their specific morphology. This work aims to elaborate differences in the spine morphology of selected Atelostomata (Spatangoida and Holasteroida) in detail, and to discuss spine microstructure for its potential systematic value. Based on 82 atelostomate species (56 spatangoids and 26 holasteroids), we show that the perforation pattern in the internal cylinder of the spine (helicoidal versus horizontal pattern) provides a safe distinction between the Spatangoida and Holasteroida. According to this character we discuss the geological history of atelostomate echinoids, in particular their migration into the deep sea, based on well-preserved records of fossil spines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.