Atrial fibrillation is responsible for a significant and steadily rising burden. Simultaneously, the treatment options for atrial fibrillation are far from optimal. Personalized simulations of cardiac electrophysiology could assist clinicians in the risk stratification and therapy planning for atrial fibrillation. However, the use of personalized simulations in clinics is currently not possible due to either too high computational costs or non-sufficient accuracy. Eikonal simulations come with low computational costs but cannot replicate the influence of cardiac tissue geometry on the conduction velocity of the wave propagation. Consequently, they currently lack the required accuracy to be applied in clinics. Biophysically detailed simulations on the other hand are accurate but associated with too high computational costs. To tackle this issue, a regression model is created based on biophysically detailed bidomain simulation data. This regression formula calculates the conduction velocity dependent on the thickness and curvature of the heart wall. Afterwards the formula was implemented into the eikonal model with the goal to increase the accuracy of the eikonal model without losing its advantage of computational efficiency. The results of the modified eikonal simulations demonstrate that (i) the local activation times become significantly closer to those of the biophysically detailed bidomain simulations, (ii) the advantage of the eikonal model of a low sensitivity to the resolution of the mesh was reduced further, and (iii) the unrealistic occurrence of endo-epicardial dissociation in simulations was remedied. The results suggest that the accuracy of the eikonal model was significantly increased. At the same time, the additional computational costs caused by the implementation of the regression formula are neglectable. In conclusion, a successful step towards a more accurate and fast computational model of cardiac electrophysiology was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.