We present a quantitative analysis of chiral symmetry breaking in two-flavour continuum QCD in the quenched limit. The theory is set-up at perturbative momenta, where asymptotic freedom leads to precise results. The evolution of QCD towards the hadronic phase is achieved by means of dynamical hadronisation in the non-perturbative functional renormalisation group approach. We use a vertex expansion scheme based on gauge-invariant operators and discuss its convergence properties and the remaining systematic errors. In particular we present results for the quark propagator, the full tensor structure and momentum dependence of the quark-gluon vertex, and the four-fermi scatterings.Comment: 18 pages, 7 figures, additional figure, additional reference
We investigate Landau gauge SU (3) Yang-Mills theory in a systematic vertex expansion scheme for the effective action with the functional renormalisation group. Particular focus is put on the dynamical creation of the gluon mass gap at non-perturbative momenta and the consistent treatment of quadratic divergences. The non-perturbative ghost and transverse gluon propagators as well as the momentum-dependent ghost-gluon, three-gluon and four-gluon vertices are calculated selfconsistently with the classical action as only input. The apparent convergence of the expansion scheme is discussed and within the errors, our numerical results are in quantitative agreement with available lattice results.
We present nonperturbative first-principle results for quark, gluon, and meson 1PI correlation functions of two-flavor Landau-gauge QCD in the vacuum. These correlation functions carry the full information about the theory. They are obtained by solving their functional renormalization group equations in a systematic vertex expansion, aiming at apparent convergence. This work represents a crucial prerequisite for quantitative first-principle studies of the QCD phase diagram and the hadron spectrum within this framework. In particular, we have computed the gluon, ghost, quark, and scalar-pseudoscalar meson propagators, as well as gluon, ghost-gluon, quark-gluon, quark, quark-meson, and meson interactions. Our results stress the crucial importance of the quantitatively correct running of different vertices in the semiperturbative regime for describing the phenomena and scales of confinement and spontaneous chiral symmetry breaking without phenomenological input.
Electrocardiography (ECG) is a key non-invasive diagnostic tool for cardiovascular diseases which is increasingly supported by algorithms based on machine learning. Major obstacles for the development of automatic ECG interpretation algorithms are both the lack of public datasets and well-defined benchmarking procedures to allow comparison s of different algorithms. To address these issues, we put forward PTB-XL, the to-date largest freely accessible clinical 12-lead ECG-waveform dataset comprising 21837 records from 18885 patients of 10 seconds length. The ECG-waveform data was annotated by up to two cardiologists as a multi-label dataset, where diagnostic labels were further aggregated into super and subclasses. the dataset covers a broad range of diagnostic classes including, in particular, a large fraction of healthy records. the combination with additional metadata on demographics, additional diagnostic statements, diagnosis likelihoods, manually annotated signal properties as well as suggested folds for splitting training and test sets turns the dataset into a rich resource for the development and the evaluation of automatic ECG interpretation algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.