Summary• Phytosulfokine-α (PSK-α) is a disulfated pentapeptide described to act as a growth factor in suspension cells. In this study, the involvement of PSK signaling through the PSK receptor gene AtPSKR1 in Arabidopsis root growth was assessed.• Expression studies of PSK precursor genes and of AtPSKR1 were performed in roots with RT-PCR and P:GUS analyses. Root elongation, lateral root formation, cell production and root cell elongation were analyzed in wild-type (wt) and in the receptor knockout mutant Atpskr1-T treated with or without synthetic PSK-α.• Phytosulfokine and AtPSKR1 genes are differentially expressed in roots. PSK-α induced root growth in a dose-dependent manner without affecting lateral root density. Kinematic analysis established that enhancement of root growth by PSK-α was mainly caused by an increase in cell size. In Atpskr1-T, the primary roots were shorter as a result of reduced mature cell size and a smaller root apical meristem composed of fewer cells than in wt.• The results indicate that PSK-α signaling through AtPSKR1 affects root elongation primarily via control of mature cell size. Root organogenesis, on the other hand, is not controlled by PSK-α.
Phytosulfokine (PSK) is perceived by the leucine-rich repeat receptor kinase PSKR1 and promotes growth in Arabidopsis thaliana. PSKR1 is coexpressed with the CYCLIC NUCLEOTIDE-GATED CHANNEL gene CNGC17. PSK promotes protoplast expansion in the wild type but not in cngc17. Protoplast expansion is likewise promoted by cGMP in a CNGC17-dependent manner. Furthermore, PSKR1-deficient protoplasts do not expand in response to PSK but are still responsive to cGMP, suggesting that cGMP acts downstream of PSKR1. Mutating the guanylate cyclase center of PSKR1 impairs seedling growth, supporting a role for PSKR1 signaling via cGMP in planta. While PSKR1 does not interact directly with CNGC17, it interacts with the plasma membrane-localized H + -ATPases AHA1 and AHA2 and with the BRI-associated receptor kinase 1 (BAK1). CNGC17 likewise interacts with AHA1, AHA2, and BAK1, suggesting that PSKR1, BAK1, CNGC17, and AHA assemble in a functional complex. Roots of deetiolated bak1-3 and bak1-4 seedlings were unresponsive to PSK, and bak1-3 and bak1-4 protoplasts expanded less in response to PSK but were fully responsive to cGMP, indicating that BAK1 acts in the PSK signal pathway upstream of cGMP. We hypothesize that CNGC17 and AHAs form a functional cation-translocating unit that is activated by PSKR1/BAK1 and possibly other BAK1/RLK complexes.
The disulfated peptide growth factor phytosulfokine-α (PSK-α) is perceived by LRR receptor kinases. In this study, a role for PSK signaling through PSK receptor PSKR1 in Arabidopsis thaliana hypocotyl cell elongation is established. Hypocotyls of etiolated pskr1-2 and pskr1-3 seedlings, but not of pskr2-1 seedlings were shorter than wt due to reduced cell elongation. Treatment with PSK-α did not promote hypocotyl growth indicating that PSK levels were saturating. Tyrosylprotein sulfotransferase (TPST) is responsible for sulfation and hence activation of the PSK precursor. The tpst-1 mutant displayed shorter hypocotyls with shorter cells than wt. Treatment of tpst-1 seedlings with PSK-α partially restored elongation growth in a dose-dependent manner. Hypocotyl elongation was significantly enhanced in tpst-1 seedlings at nanomolar PSK-α concentrations. Cell expansion was studied in hypocotyl protoplasts. WT and pskr2-1 protoplasts expanded in the presence of PSK-α in a dose-dependent manner. By contrast, pskr1-2 and pskr1-3 protoplasts were unresponsive to PSK-α. Protoplast swelling in response to PSK-α was unaffected by ortho-vanadate, which inhibits the plasma membrane H+-ATPase. In maize (Zea mays L.), coleoptile protoplast expansion was similarly induced by PSK-α in a dose-dependent manner and was dependent on the presence of K+ in the media. In conclusion, PSK-α signaling of hypocotyl elongation and protoplast expansion occurs through PSKR1 and likely involves K+ uptake, but does not require extracellular acidification by the plasma membrane H+-ATPase.
The number, diversity and significance of peptides as regulators of cellular differentiation, growth, development and defence of plants has long been underestimated. Peptides have now emerged as an important class of signals for cell-to-cell communication over short distances, and also for long-range signalling. We refer to these signalling molecules as peptide growth factors and peptide hormones, respectively. As compared to remarkable progress with respect to the mechanisms of peptide perception and signal transduction, the biogenesis of signalling peptides is still in its infancy. This review focuses on the biogenesis and activity of small post-translationally modified peptides. These peptides are derived from inactive pre-pro-peptides of approximately 70-120 amino acids. Multiple post-translational modifications (PTMs) may be required for peptide maturation and activation, including proteolytic processing, tyrosine sulfation, proline hydroxylation and hydroxyproline glycosylation. While many of the enzymes responsible for these modifications have been identified, their impact on peptide activity and signalling is not fully understood. These PTMs may or may not be required for bioactivity, they may inactivate the peptide or modify its signalling specificity, they may affect peptide stability or targeting, or its binding affinity with the receptor. In the present review, we will first introduce the peptides that undergo PTMs and for which these PTMs were shown to be functionally relevant. We will then discuss the different types of PTMs and the impact they have on peptide activity and plant growth and development. We conclude with an outlook on the open questions that need to be addressed in future research.
SUMMARYPhytosulfokine (PSK) is a secreted disulfated pentapeptide that controls root and shoot growth. The ubiquitous expression of PSK precursor and of the LRR receptor kinase genes in Arabidopsis raised the question of whether PSK acts as an autocrine growth factor in planta. Expression of PSKR1 under the control of tissue-and cell type-specific promoters in a receptor null background strongly suggests that PSK is a non-cell autonomous signal that controls growth through localized activity in the epidermis. pskr1-3 pskr2-1 seedlings had shorter roots and hypocotyls than the wild type, whereas 35S: PSKR1 or 35S: PSKR2 seedlings were larger, indicating that receptor abundance limits growth in planta. The preferential expression of PSKR1 in the epidermis of CER6: PSKR1 pskr1-3 pskr2-1 seedlings was sufficient to promote wild-type growth. Moreover, in GL2:PSKR1 pskr1-3 pskr2-1 seedlings that express PSKR1 in atrichoblasts of the root epidermis, root growth was restored to wild-type levels. In pskr1-3 pskr2-1 seedlings, trichoblasts and atrichoblasts were shorter than in the wild type. Trichoblasts of GL2:PSKR1 pskr1-3 pskr2-1 seedlings, which are unable to sense PSK, nonetheless had acquired wild-type length, suggesting that PSK acts as a non-cell autonomous signal. Inhibition of brassinosteroid (BR) biosynthesis with brassinazole (BZ) caused a loss of responsiveness to PSK in wild-type, tpst-1 (tyrosylprotein sulfotransferase-1), PSKR1ox12 and CER6:PSKR1 -3-1 seedlings, as did the genetic knock-out of BR synthesis in det2-1 and of BR perception in bri1-9, suggesting that BR mediates PSK-dependent growth. Quantitative PCR analysis of BR-related genes in wild-type, pskr1-3 pskr2-1, PSKR1ox and tpst-1 seedlings showed largely unchanged transcript levels of BR biosynthesis genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.