Summary Accurate pathological diagnosis is crucial for optimal management of cancer patients. For the ~100 known central nervous system (CNS) tumour entities, standardization of the diagnostic process has been shown to be particularly challenging - with substantial inter-observer variability in the histopathological diagnosis of many tumour types. We herein present the development of a comprehensive approach for DNA methylation-based CNS tumour classification across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that availability of this method may have substantial impact on diagnostic precision compared with standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility we have designed a free online classifier tool (www.molecularneuropathology.org) requiring no additional onsite data processing. Our results provide a blueprint for the generation of machine learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.
Summary: CD19- and B-cell maturation antigen (BCMA)–directed chimeric antigen receptor (CAR) T cells have enabled unprecedented responses in a subset of refractory patients with B-cell and plasma cell malignancies, leading to their approval by the FDA for the treatment of leukemia, lymphoma, and myeloma. These “living drugs” can become part of a synthetic immune system, persisting at least a decade in some patients. However, despite this tremendous impact, significant unmet treatment needs remain for patients with hematologic malignancies and solid cancers. In this perspective, we highlight recent innovations that advance the field toward production of a more potent and universal cellular immunotherapy of the future. Next-generation CAR T cells will incorporate advances in gene engineering and synthetic biology to enhance functionality and persistence, and reduce treatment-associated toxicities. The combination of autologous CAR T cells with various allogeneic cell treatment strategies designed to target the immunosuppressive tumor microenvironment will broaden the impact of future CAR T-cell therapies.
Olfactory neuroblastoma/esthesioneuroblastoma (ONB) is an uncommon neuroectodermal neoplasm thought to arise from the olfactory epithelium. Little is known about its molecular pathogenesis. For this study, a retrospective cohort of n = 66 tumor samples with the institutional diagnosis of ONB was analyzed by immunohistochemistry, genome-wide DNA methylation profiling, copy number analysis, and in a subset, next-generation panel sequencing of 560 tumor-associated genes. DNA methylation profiles were compared to those of relevant differential diagnoses of ONB. Unsupervised hierarchical clustering analysis of DNA methylation data revealed four subgroups among institutionally diagnosed ONB. The largest group (n = 42, 64%, Core ONB) presented with classical ONB histology and no overlap with other classes upon methylation profiling-based t-distributed stochastic neighbor embedding (t-SNE) analysis. A second DNA methylation group (n = 7, 11%) with CpG island methylator phenotype (CIMP) consisted of cases with strong expression of cytokeratin, no or scarce chromogranin A expression and IDH2 hotspot mutation in all cases. T-SNE analysis clustered these cases together with sinonasal carcinoma with IDH2 mutation. Four cases (6%) formed a small group characterized by an overall high level of DNA methylation, but without CIMP. The fourth group consisted of 13 cases that had heterogeneous DNA methylation profiles and strong cytokeratin expression in most cases. In t-SNE analysis, these cases mostly grouped among sinonasal adenocarcinoma, squamous cell carcinoma, and undifferentiated carcinoma. Copy number analysis indicated highly recurrent chromosomal changes among Core ONB with a high frequency of combined loss of chromosome 1-4, 8-10, and 12. NGS sequencing did not reveal highly recurrent mutations in ONB, with the only recurrently mutated genes being TP53 and DNMT3A. In conclusion, we demonstrate that institutionally diagnosed ONB are a heterogeneous group of tumors. Expression of cytokeratin, chromogranin A, the mutational status of IDH2 as well as DNA methylation patterns may greatly aid in the precise classification of ONB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.